
Beginning Game
Development with
Godot

Learn to Create and Publish Your
First 2D Platform Game
—
Maithili Dhule

Beginning Game
Development with Godot
Learn to Create and Publish Your

First 2D Platform Game

Maithili Dhule

Beginning Game Development with Godot: Learn to Create and Publish Your First
2D Platform Game

ISBN-13 (pbk): 978-1-4842-7454-5 ISBN-13 (electronic): 978-1-4842-7455-2
https://doi.org/10.1007/978-1-4842-7455-2

Copyright © 2022 by Maithili Dhule

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi
Copyeditor: Kim Wimpsett

Cover designed by eStudioCalamar

Cover image designed by Maithili Dhule

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978- 1- 4842- 7454- 5. For more
detailed information, please visit www.apress.com/source- code.

Printed on acid-free paper

Maithili Dhule
Singapore, Singapore

https://doi.org/10.1007/978-1-4842-7455-2

Dedicated to all aspiring game developers!

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

Table of Contents

Part I: The Art of Creating Games ��� 1

Chapter 1: Introduction��� 3

The Birth of Video Games �� 3

Principles of Game Design �� 5

Game Progression ��� 5

Put the Player in Control �� 5

Give the Player Choices ��� 6

Create Immersive Scenarios ��� 6

Have a Creative Vision ��� 7

What Is a Game Engine? ��� 7

How Do We Choose a Game Engine? �� 9

Why Choose Godot? �� 11

The Graphics Engines Are Amazing ��� 11

It’s Easy on the Eyes �� 11

It’s Open Source �� 11

It Can Be Run on Multiple Platforms �� 11

It Supports Live Editing�� 12

It Has Its Own Scripting Language �� 12

There Is a Vast Community Support �� 12

The Documentation Is Extensive ��� 12

vi

You Can Tinker with It �� 12

Teamwork Is a Breeze ��� 13

It’s “MegaByte”-Sized ��� 13

Key Takeaways �� 13

Part II: Starting Out with Godot �� 15

Chapter 2: Getting Started with Godot �� 17

Downloading the Engine ��� 17

Creating a New Project ��� 19

Exploring the Engine Interface �� 22

FileSystem ��� 23

Scene Dock �� 24

Inspector Dock ��� 26

Workspaces ��� 28

Animation Panel �� 28

SpriteFrames Panel ��� 29

Output Panel �� 30

Debugger Panel ��� 30

Audio Panel �� 31

2 D Toolbar �� 31

Playtest Buttons �� 31

Tips and Shortcuts �� 32

Key Takeaways �� 33

Chapter 3: GDScript in a Nutshell ��� 35

What Is GDScript? ��� 35

Scripting �� 36

Variables and Data Types �� 38

Integer ��� 38

Float ��� 38

Boolean �� 38

Table of ConTenTs

vii

String ��� 38

Declaring a Variable ��� 39

Explicit and Inferred Typing ��� 39

Constants ��� 40

Enums �� 40

Keywords ��� 41

Comments ��� 41

Output �� 41

Functions �� 42

Array ��� 44

Random Number Generation ��� 46

Operators and Computation �� 48

Mathematical Operators �� 48

Comparison and Logical Operators ��� 49

if-else Statements ��� 51

Dictionaries ��� 52

Looping ��� 55

for Loop ��� 55

while Loop ��� 58

Key Takeaways �� 59

Chapter 4: Exploring Game Physics �� 61

Collision Objects ��� 61

The Node-Scene Architecture ��� 62

Adding Nodes to the Scene ��� 63

Creating a Rigid Body �� 65

Adding a Sprite Node �� 66

Adding a Collision Shape �� 70

Playing Your First Scene ��� 74

Properties of RigidBody2D �� 77

Table of ConTenTs

viii

Duplicating a Node �� 78

Creating a Static Body��� 80

Key Takeaways �� 86

Part III: Designing the Game ��� 87

Chapter 5: Adding Game Graphics �� 89

What Are Game Assets? �� 89

OpenGameArt�org �� 90

Itch�io ��� 91

Gameart2D ��� 92

Kenney�nl ��� 93

Choosing the Right Assets �� 93

Importing Game Art ��� 94

Creating the Main Game Scene��� 95

Creating Game Objects as Scenes ��� 95

Designing the Main Game Scene ��� 96

Creating the Player�� 108

Linking the Player to the Main Scene ��� 112

Moving the Player Using Keyboard Input �� 113

Assigning Keyboard Input ��� 117

Adding a Background Image ��� 122

Key Takeaways �� 125

Chapter 6: Game Animations �� 127

Giving Life to the Player �� 127

Importing Images for Animation �� 127

Animating the Player ��� 133

Creating Animations with Individual Images ��� 138

Idle Animation �� 138

Run Animation ��� 141

Jump Animation��� 146

Other Player Actions �� 152

Table of ConTenTs

ix

Creating Animations Using a Sprite Sheet �� 152

Introduction to Godot’s Animation Player �� 153

Key Takeaways �� 160

Chapter 7: Building the Game World ��� 161

Importing the TileMaps ��� 163

Creating Individual Tiles �� 166

Camera-Follow �� 182

Creating a Parallax Background �� 187

Design Ideas ��� 200

Key Takeaways �� 202

Chapter 8: Counting Wins and Losses �� 203

Adding Coins to the Game ��� 203

Animating the Coin �� 209

Creating a Coin in the Game Level �� 216

Collecting Coins �� 219

Collecting the Coin Using Signals �� 220

Creating More Collectibles �� 225

Adjusting the Rewards �� 228

Adding Enemies �� 230

Detecting Ledges with a Raycast �� 240

Colliding with the Enemy �� 244

Collision Layer and Collision Mask �� 247

Player��� 250

Enemy �� 250

Coin ��� 252

Detecting Falls �� 252

Changing Scenes �� 254

Fall Area and Finish Level Area Collision��� 259

Key Takeaways �� 260

Table of ConTenTs

x

Part IV: Game Enhancements and Export ��� 261

Chapter 9: Game GUI ��� 263

Creating the HUD ��� 264

HBoxContainer and VBoxContainer �� 271

Creating a Script for the HUD �� 273

Custom Signals for Coin Collection ��� 274

Displaying the Player’s Lives ��� 281

Turning the Player Red on Getting Hurt ��� 286

Creating the Title Screen ��� 288

Background ��� 288

Adding Text �� 293

Adding a Panel ��� 295

Adding Buttons �� 300

Attaching a Script to a Button ��� 305

Adding an Image to the Title Screen �� 309

The Game Over Screen �� 310

Adding Music to the Game �� 311

Adding Sound Effects �� 313

Jumping ��� 313

Coin Collected �� 314

Key Takeaways �� 321

Chapter 10: Publishing Your Game ��� 323

Game Enhancements �� 323

Creating Global Variables ��� 324

Defeating the Monsters ��� 328

Adding Touchscreen Buttons ��� 336

Exporting Your Game ��� 341

Downloading Export Templates ��� 341

Exporting to PC (Windows) �� 343

Exporting to Mobile (Android)�� 347

Table of ConTenTs

xi

Exporting to Browser (HTML) ��� 353

Publishing Your Game �� 356

Itch�io ��� 356

Exporting Tips �� 359

Monetizing Your Game ��� 360

What’s Next? ��� 360

Key Takeaways �� 361

 Index ��� 363

Table of ConTenTs

xiii

About the Author

Maithili Dhule is an Electronics engineer by profession,

and holds a Master’s degree in Integrated Circuit Design.

She is a writer by choice, and an aspiring game developer.

After coming across the art of creating games, she quickly

realized it was one of her passions. During her free time, she

can be found experimenting with different game engines or

being immersed in one of her favorite games. She also enjoys

trying out new restaurants, sketching portraits, writing

poetry, and going for runs while listening to a good music playlist. She has developed a

browser-based game called Dragon’s Flight, which is playable on the website Itch.io. You

can reach out to her at mathletmakesgames@gmail.com.

xv

About the Technical Reviewer

John Wigg is a computational and data science student.

He holds a bachelor’s degree in physics, and his interests

include computer graphics, game development, and open

source. In the past, he has worked as a technical assistant

for many of his university’s working groups. As a fan of the

Godot game engine, he likes to release open source projects

and tools for it as well as participate in game jams. In the

future, he hopes to draw from his scientific background to

explore a career in computer graphics and visualization.

xvii

Acknowledgments

“If I have seen further than others, it is by standing on the shoulders of
giants.”

—Sir Isaac Newton

Here I am today, the author of a book on a topic I enjoy immensely—game development.

There are quite a lot of people I am grateful for, for helping make this book come to

fruition.

I would like to thank my family for being supportive and patient and for motivating

me while I spent back-breaking hours working on the manuscript.

I am grateful for my friends (all around the world!) for making me laugh and smile

and for always believing in me.

I feel lucky to have been taught by so many wonderful teachers over the years. Thank

you for teaching me, inspiring me, and making me capable to enough to write a book!

I am also immensely grateful to my acquisition editor, Spandana Chatterjee, for

giving me this opportunity to combine my passion for writing and making games.

I would also like to thank my technical editor, John Wigg, for taking the effort to go

through the entire book and suggesting valuable feedback. Moreover, I am thankful to

Divya Modi, Laura Berendson, and the rest of the Apress team for your collaboration

and help.

Thank you all for making my dream a reality!

xix

Introduction

Game development is a journey of discovery and creation—it’s an art, really. With the

right tools and knowledge, we can all be artists. What makes it remarkable is that it

welcomes people with all kinds of talents; you can be a coder who makes the program

work, you can be a designer who creates game characters and builds the game world,

you can be a musician who adds music and sound effects, or you can be someone who

does all of that! It gives you the chance to either work independently (earning the cool

title of indie game developer!) or collaborate with other talented individuals.

Surprisingly, some of the very best games out there start with small teams or are

created by just a single person. But this has the incredible advantage of giving you the

opportunity to learn more. This is where books and resources on game development,

such as this one, come into the picture.

I would like to take a moment to thank you, reader, for picking up this book. We’ll

begin our learning journey together. While some of us may be just starting out in game

development, some among us may be seasoned programmers who want to get a solid

understanding of the basics of making 2D games with Godot. Here’s a glimpse into what

comes next:

We’ll …

• Briefly talk about some design principles that are used by famous

games to make them fun to play. We’ll discuss game engines and

what makes Godot a great one for beginners and experts alike.

• Get comfortable with navigating around the Godot interface, and

brush over the basics of GDScript, the main scripting language used

in Godot.

• Play around with game physics and use the related concepts to

animate and control our game character.

• Design the entire 2D game world, adding different collectibles

that the player can collect and introduce enemies that the player

can defeat.

xx

• Create a simple system to keep track of the player’s score and lives,

and create a mechanism to reload a scene if a player falls off a cliff or

to load the Game Over scene if the player loses the game.

• Add some cool music and sound effects to our game, and design the

GUI for various game screens such as the title screen.

• Export our games to various platforms such as mobile (Android),

PC (Windows), and the browser.

• Learn ways to publish and monetize our game.

Now, let’s dive right into making our first 2D platformer in Godot!

InTroduCTIon

PART I

The Art of Creating
Games

3
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_1

CHAPTER 1

Introduction

 In this chapter, we’ll talk briefly about early games and the rise of the gaming
industry. We’ll take a look at the basic principles of game design and the secrets
behind making a game exciting to play. We’ll also learn about the concept of a
game engine, how to choose one, and some compelling reasons to pick Godot.

 The Birth of Video Games
The origins of video game development date back to the 1950s, a time when a computer

was a gigantic piece of machinery that took up the whole room. It was unimaginable to

use such a huge machine for the purpose of entertainment, let alone gaming.

This changed in 1958, when Tennis for Two was created to attract guests to an

exhibition and demonstrate advances in technology. This game simulated an actual

tennis match between two players, giving each player the ability to hit the on-screen ball

using simple handheld controllers. Two perpendicular lines formed the ground and the

net, while the ball was just a simple green dot on the screen that changed its trajectory

every time a player pressed a button on the controller.

A decade later, a group of students designed the game Spacewar! at the

Massachusetts Institute of Technology. In this space-themed combat game, two players

tried to destroy each other’s spaceship through strategic shooting and maneuvering

through a star system that was on the verge of collapse. There were no winners or losers,

and the game simply restarted once one of the spaceships was hit. Deemed as one of the

first video games playable on multiple computers, it paved the way for the future of game

development.

https://doi.org/10.1007/978-1-4842-7455-2_1#DOI

4

The years following the 1970s saw the rise of arcade machines and gaming consoles,

with companies such as Atari, Magnavox, Nintendo, and Sega dominating the gaming

industry. Gaming consoles such as the Magnavox Odyssey and Atari 2600 became

popular among the public.

A number of timeless pieces were soon created, such as:

• Pong: A two-dimensional predecessor of the modern-day air hockey.

• Space Invaders: A space shooter where you have to defeat multiple

rows of incoming aliens by firing at them with the help of a

laser cannon.

• PAC-MAN: A game where you play as a hungry, yellow character that

has to munch through all the dots in a maze while picking up fruit

and powerups, all while avoiding colorful ghosts.

• Donkey Kong: An action platformer in which you play as Jumpman,

attempting to climb ladders and avoiding the barrels and fireballs

thrown at you by an evil monkey.

• Super Mario Bros.: A 2D side-scroller in which you play as Mario or

Luigi to try to save Princess Toadstool from the boss turtle Bowser

while fighting evil mushrooms (Goombas) and turtles (Koopa

Troopas).

• Ultima: A series of open-world, fantasy-themed games where the

player can customize their character, upgrade its skills, and explore

the fantasy realm of Britannia.

Today, the gaming industry is worth hundreds of billions of dollars and continues to

grow with advances in technology. We can take our pick from tons of gaming consoles

such as Xbox Series X, Sony PlayStation, and the Nintendo Switch and Wii, or choose to

play on our PC or smartphone. In fact, many games, such as Fortnite and Minecraft, are

now playable on multiple platforms.

Game graphics have evolved from being simple, pixel-based to incredibly lifelike

and hyper-realistic. Half-Life: Alyx, Assassin’s Creed, The Outer Worlds, and Far Cry are

some of the best examples of games that have worked painstakingly to create a gaming

experience that closely mirrors real-life objects, people, and places. The game graphics,

storyline, and characters of modern games have become so advanced that they put the

player right in the middle of the game, blurring the lines between reality and fiction.

Chapter 1 IntroduCtIon

5

 Principles of Game Design
A game needs a sense of accomplishment. And you have to have a sense
that you have done something so that you get that sense of satisfaction of
completing something.

—Shigeru Miyamoto, designer of Super Mario

As a game designer, you hold the power to create a fantastic experience for the player.

What makes games great to play isn’t just complex mechanics and beautiful graphics;

often, the simplest of games can turn out to be quite fun and exciting. Let’s learn about

the fundamental principles that are used to design popular games.

 Game Progression
The trick to make your game more interesting lies in challenging the player to overcome

difficult yet achievable scenarios while providing rewards for successful attempts. This

can be done through the progression of gameplay. The game’s initial levels should

introduce the player to the gaming controls and the game’s objectives, characters,

enemies, and possible rewards.

The game difficulty should increase gradually to avoid overwhelming the player.

With every next level, you can introduce different elements of game mechanics such

as new weapons, abilities, powerups, and locations. You can choose to give the player

various missions or tasks to complete within a level, such as collecting a certain number

of coins or defeating all the enemies in that level. You can also keep certain levels locked

until the player completes some of these tasks.

The game Temple Run is an excellent example of game progression. The player starts

out by running slowly and is introduced to the mobile tilt-controlled style of gameplay.

As time passes, the speed of the endless runner keeps increasing until the player runs

into an obstacle. The challenge to run as far as possible and collect as many coins as

possible, all while a monster chases you, makes the game fast-paced and exciting.

 Put the Player in Control
In a management-style game like Roller Coaster Tycoon (RCT), Planet Zoo, and the Age

of Empires, everything that happens in the game world is in your hands. In such games,

you often start out with limited resources and work your way up to the top. The game

Chapter 1 IntroduCtIon

6

then simulates conditions that test your skills, which leads to either success or disaster in

the game. For example, in RCT, you are the boss of an amusement park. You can control

the smallest of things—the price of the park ticket, the number and type of staff you want

to hire, how many scary or gentle rides your park will have, and even the landscape in

and around the park. Based on these factors, the game will create random events that

may happen in the case of an actual theme park. The number of guests that come to your

park, their opinion about each ride, and the amount of profit you will make will depend

on how well you design the park. Having total control over a virtual world in games like

these can keep you engaged for hours on end.

 Give the Player Choices
According to modern-day psychology, when you are given choices, it makes you feel

powerful. In the game Life is Strange, you play as Max, a character with the ability to

reverse time. By making specific choices at different points in the game, you control the

game’s narrative. If the story doesn’t play out the way you wanted it to, you can always

go back and change your decision and see a different version of the game storyline. This

game mechanic is widely used in the choose-your-own-adventure genre.

The act of being able to make a choice that directly impacts a game can be pretty

meaningful for a player. A lot of role-playing games are designed using this idea. For

example, almost all RPGs give you the ability to customize your character at the beginning

of the game; you can pick everything from the character’s looks to its special skills and

abilities. This helps create a unique experience for the player by helping them connect

emotionally to the characters and makes the game interesting and playable multiple times.

 Create Immersive Scenarios
Massively multiplayer online role-playing games (MMORPGs) such as the World of

Warcraft and Runescape and strategic Life simulation games such as those in the Sims

franchise let you customize your character and explore an open world filled with endless

possibilities. Such games tend to be highly immersive as they have activities that mimic

real life, such as fishing, woodcutting, and trading. They often contain elements of

fantasy and science-fiction, which tickle the player’s imagination. The thrill of virtually

walking through dangerous and harsh terrain, battling mythical monsters, and being

the hero and saving the day can be highly enticing. This element of escapism makes the

game incredibly satisfying and addictive for the player.

Chapter 1 IntroduCtIon

7

 Have a Creative Vision
What do Lara Croft, Mario, Max Payne, Sonic the Hedgehog, and Princess Zelda have in

common? They are all memorable video game characters that are known and loved by

fans all over the world. In fact, they are as famous as the game they star in! The credit to

their fame goes to the fact that they have been meticulously designed according to the

game’s theme and storyline.

If you want to create a game that will stand out, you need to think about a couple

of things:

• The game type, e.g., platformer, MMORPG, puzzle

• The game genre, e.g., horror, fantasy, science-fiction,

action- adventure

• The story you want to tell through your game

• Whether your game is going to be two-dimensional or

three- dimensional

• Whether you want to include super-realistic characters and places or

cartoon-style, two-dimensional ones

Once you decide your game’s overall look and feel, you need to pick a game engine

to start creating it. In the next section, we’ll explore what exactly a game engine is and

how to choose one.

 What Is a Game Engine?
Say you want to bake a cake. All you need to do is to gather all the ingredients, mix them

in a bowl, and put them in the oven to bake. Now imagine trying to build the oven from

scratch! Luckily, you don’t need to do that. There are dozens of different ovens available

in the market that you can purchase, each with a different set of features.

A game engine is like an oven that you can use right out of the box. It is a collection

of audio, visual, and technical tools that form the basic framework needed to create any

game. These reusable software tools make it easy to pick and choose the components

Chapter 1 IntroduCtIon

8

you need while designing your game. Most engines are packed with various features

such as:

• 2D and 3D graphics rendering engines that support animation

• A physics engine for handling rigid body collisions and interaction

• An audio engine for adding music and sound effects

• Support for different programming languages such as GDScript, C#,

C, and Java

• Integration of technologies such as artificial intelligence, virtual

reality, and augmented reality

• Support for publishing the game to various platforms such as mobile,

PC, console, and the Web

To truly build a game from scratch, you would have to first create the game engine

by yourself, a task that could take months, if not years. With the use of ready-made tools

provided by game engines, you can focus on the process of creating the game instead of

trying to reinvent the wheel!

If you are just getting started with game development, game engines can help you

quickly create a prototype of your game while learning key concepts without going too

deep into the technical details. If you make a game for one specific platform, you can use

the same engine to generate another build for a different platform without redesigning

the entire game.

With the availability of popular game engines such as Godot, Unity, and Unreal, it

has become easier than ever to jump right into creating games today. Figure 1-1 shows

the interface of the Unity game engine, which shows a sample game scene. Let’s take a

look at some of the factors we need to consider while choosing a game engine.

Chapter 1 IntroduCtIon

9

Figure 1-1. A game scene created using Unity, a popular game engine

 How Do We Choose a Game Engine?
Some of the most popular game engines on the market that exist today include Godot,

Unreal Engine, Unity, CryEngine, GameMaker Studio, AppGameKit, and RPGMaker.

With such a daunting number of choices available, which one should you pick?

Several factors can help you decide:

• The kind of game you’re trying to make, indie or AAA?

• Your team size and budget

• The tools and features that are necessary to build your game

• The platform you want to release your game to, PC, mobile,

and/or console?

Chapter 1 IntroduCtIon

10

• The engine interface you prefer

• The programming languages that you are comfortable with

Independent or indie games are usually created by an individual or a small team.

Celeste, Stardew Valley, Super Meat Boy, and Hollow Knight are some famous examples.

They typically have a smaller budget and are less taxing on the hardware when played. If

you’re aiming to create an indie-style game, you may not need a fancy engine with lots of

features you won’t use.

On the other hand, AAA games are the golden eggs of the gaming industry and

are developed by huge teams over a long period. Bethesda Game Studios, known for

developing the Elder Scrolls series, and Square Enix, known for creating the Final

Fantasy series, are examples of AAA studios. These companies invest millions of dollars

to make these popular titles, often using their own in-house game engines. They

generally have significantly higher budgets as they need advanced tools for creating

highly immersive, hyper-realistic characters and worlds.

Every game engine has a unique interface, with its own set of pros and cons. You

should try playing around with different ones until you find one that you’re comfortable

with. Engines like Unity and Unreal are free for personal use, as long as the revenue you

earn on your game doesn’t cross a certain threshold. Advanced versions of such engines

offer more extensive features and more technical support but may set you back a few

thousand dollars a year. Godot, Spring Engine, and Panda 3D are examples of open

source software, which means that you don’t need to pay a single cent to use them for

creating and selling your game.

You also need to consider the level of programming that you are most comfortable

with. C++, C#, and Java are some of the most commonly used languages used in game

development. Game engines usually support multiple languages but may be associated

with one or two predominant ones. For example, Unity natively supports scripting in C#.

On the other hand, many game engines, such as Godot, CryEngine, and Unreal, support

visual scripting as well. This lets you focus on the flow of the logic without concentrating

too much on writing technical code.

Chances are, since you’ve picked up this guide, you are just starting out with game

development and might be considering beginning with a simple 2D game. If this is the

case, you may not want to spend a lot of time and money on creating your first game.

It’s best to stick with beginner-friendly engines that have good documentation and

community support. Let’s take a look at some of the reasons why Godot might be a

great choice.

Chapter 1 IntroduCtIon

11

 Why Choose Godot?
Here’s what makes Godot an excellent choice as a game engine.

 The Graphics Engines Are Amazing
Godot has dedicated 2D and 3D graphics engines that are packed with valuable

features. The 2D engine, which uses pixel coordinates, allows you to animate just about

anything with its straightforward, keyframe-based animation player. A flexible kinematic

controller enables you to implement rigid body interaction with ease. A tilemap editor

lets you paint the game world with auto-tiling and create beautiful parallax backgrounds.

3D lighting and shadow effects, camera-perspective control, and the ability to create a

procedural sky are just some of the features you can use to enhance your game.

 It’s Easy on the Eyes
A dark blue screen with neatly arranged docks, buttons, and shortcuts make up

the beautiful, uncluttered UI of the Godot Engine. The interface is intuitive and

straightforward and doesn’t confuse the user with too much information. You can easily

switch between the 2D and 3D editors, the Scripting window, and the Assets library, all

with the click of a button.

 It’s Open Source
This means that Godot is completely free for anyone to download and use. You hold the

copyright to every game you create with this engine and don’t have to pay its developers

a single cent for doing so. Released under the MIT license, it gives you the ability to sell

the game for profit without paying any royalties.

 It Can Be Run on Multiple Platforms
Godot works on Windows, Linux, and macOS, available in both the 32-bit and 64-bit

versions. You can readily deploy your games to various desktop and mobile platforms,

as well as to the Web. You can export the game to different gaming consoles such as

Nintendo Switch and Xbox One using third-party applications (usually at a certain

extra cost).

Chapter 1 IntroduCtIon

12

 It Supports Live Editing
You can modify your game even while it’s running! You don’t have to worry about losing

any changes if you accidentally close your project; the changes are always saved by

default.

 It Has Its Own Scripting Language
Godot game code is generally written in GDScript, a simple, easy-to-learn scripting

language similar to Python. You can directly type your code in the editor using Godot’s

scripting interface. Programming languages such as C++, C#, and Visual Scripting are

officially supported as well.

 There Is a Vast Community Support
Godot has active community support such as groups and channels on Discord,

Facebook, Reddit, Twitter, Steam, and YouTube. There is a dedicated GitHub repository

of engine-related codes that are accessible to all. You can use the Godot Forum to ask the

other users for help if you get stuck while creating your game and read about issues that

others may have faced. What’s more, there are user groups hosted by Godot community

members in many parts of the world.

 The Documentation Is Extensive
Docs.godotengine.org is the official website that contains the Godot API and step-

by- step manual for getting started in Godot. There are tons of tutorials and resources

available online, which discuss topics such as creating canvas layers, learning the basics

of game-related math and physics, accessing the asset library, and creating multiplayer

games. You can even access the built-in references to the documentation from within the

UI itself.

 You Can Tinker with It
Godot is community-driven, with hundreds of contributors working on improving it. As

a user, you can play around with its source code, modify it, and even distribute it to other

users. You can even create your own custom tools and add them to the visual editor.

Chapter 1 IntroduCtIon

https://docs.godotengine.org/en/stable/

13

 Teamwork Is a Breeze
Using Godot’s filesystem makes it easy to collaborate and practice version control when

working on a project with a team. Moreover, you can create instances of every game

scene, allowing each team member to independently work on different aspects of the

game. For example, if one person is working on making the character, another can

work on level design simultaneously. Files can then be shared between team members

on GitHub.

 It’s “MegaByte”-Sized
The fact that the download size is a meager 60 MB or less means that it doesn’t waste

space on your system. This lightweight nature makes it highly portable.

 Key Takeaways
In this chapter, we learned about the advent of video games and how they led to

the creation of timeless classics like Super Mario, Donkey Kong, and PAC-MAN. We

were introduced to various game design principles and learned how strategies like

game progression, giving the player control and choices over the game narrative, and

introducing immersive scenarios can make the game more enjoyable. We discussed how

it is essential to have a creative vision for our game and think about its type, genre, and

characters. We took a look at what a game engine is and were given pointers on how to

choose one. Lastly, we found out some of the compelling reasons to work with Godot.

Now, let’s get started with the Godot Engine!

Chapter 1 IntroduCtIon

PART II

Starting Out with Godot

17
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_2

CHAPTER 2

Getting Started
with Godot

 In this chapter, we’ll learn how to download Godot and get started with
creating a new project. We’ll also explore the engine interface while learning about
its essential components.

 Downloading the Engine
As we learned in the previous chapter, Godot has many advantages. One of the best

ones is that it is open source, making it completely free to use. What’s more, you can

download this tiny, megabyte-sized file, unzip it, and use it right out of the folder without

the hassle of installation. First, download the latest version of the engine from either the

Steam store or Godot’s official website, https://godotengine.org/download/. Godot

is also available for download on Itch.io, a website that hosts and sells indie games and

game assets (https://godotengine.itch.io/godot).

You can download the Godot engine for Linux, Windows, macOS, and the Linux

server, as shown in Figure 2-1. The standard version for Windows, which is available in

both 64-bit and 32-bit options, supports Godot’s own scripting language, GDScript. This

is the one that we will be using in this book. There is another version available called

Mono, which supports the C# programming language. You can determine whether your

operating system is 64-bit or 32-bit by heading to System Settings ➤ About My PC on

your computer.

https://doi.org/10.1007/978-1-4842-7455-2_2#DOI
https://godotengine.org/download/
https://godotengine.itch.io/godot

18

Note This book assumes you’re using either version 3.2.3 or version 3.3 of
Godot. Keep in mind that the projects that you work on using older versions of
Godot can be opened with and generally work fine in newer versions of the engine,
but the opposite may not true.

After unzipping the downloaded folder, you’ll find an executable file (.exe) named

according to the version of Godot you’re using, for example, Godot_v3.3-stable_win64.

You can run this file from anywhere on your computer by copying it to that location and

double-clicking it. Once Godot launches, two windows will pop up: a black-colored

command prompt console, as shown in Figure 2-2, and the Project Manager window, as

shown in Figure 2-3. It’s okay to minimize the command prompt window, but don’t close

it; otherwise, the Godot application will quit as well. This window usually displays error

messages for issues that may occur while you’re using the engine.

Figure 2-1. Different versions of the Godot Engine are available for download

ChapTer 2 GeTTInG STarTed WITh GodoT

19

Figure 2-2. The Godot command prompt console window

 Creating a New Project
The Project Manager window allows you to create, import, and run projects. The first

time you launch Godot, the Project Manager will give you the option to open the asset

library, as shown in Figure 2-3. This library is basically a collection of user-developed

tools, templates, plugins, and game demos that you can download and run in Godot.

They are all created and published by its community members and are completely free

to use. For now, you can choose to click Cancel; you can always access the library on the

Templates tab in the Project Manager window.

ChapTer 2 GeTTInG STarTed WITh GodoT

20

Next, click the New Project button in the panel on the right, and a window will pop

up, as shown in Figure 2-4. Here, you can type the name of your game in the Project

Name field and click the Browse button to select a project path to save your project. A

green tick next to the Browse button indicates that the folder under the specified path

is empty, while a red cross means it isn’t. Godot needs an empty folder for storing your

project files, so make sure to choose a path that points to one.

Figure 2-3. The Godot Project Manager

ChapTer 2 GeTTInG STarTed WITh GodoT

21

Figure 2-4. When creating a new project, make sure to select an empty folder

There are two options for the renderer that you can select: OpenGL ES 3.0 and

OpenGL ES 2.0. Version 3.0 results in higher-quality rendering and provides more

features but may not be compatible with older hardware. On the other hand, 2.0 is lower

in quality but may work on older and newer hardware. We’re going to stick to 3.0 in this

book. Once you select the renderer version, click the Create & Edit button at the bottom

of the Project Manager window to create your project. See Figure 2-5.

TRY IT!

Creating Your First Project

 1. download the latest version of Godot, unzip and extract the application (.exe)

file, and double-click to launch it.

 2. Create a new project, and give it the name of your game, for example,

Jump N Run.

ChapTer 2 GeTTInG STarTed WITh GodoT

22

 Exploring the Engine Interface
The Godot interface consists of key components, such as:

• FileSystem dock

• Scene dock

• Inspector dock

• 2D and 3D workspaces

• Output, Debugger, Audio, and Animation panels

• 2D and 3D toolbars

• Playtest buttons

Let’s take a look at each of them. See Figure 2-6.

Figure 2-5. Creating a new project with the OpenGL ES 3.0 renderer

ChapTer 2 GeTTInG STarTed WITh GodoT

23

Figure 2-6. The Godot interface

 FileSystem
The FileSystem dock is a window that displays all the files and game assets in your

project. By default, it contains a resource file called default_env.tres, and the PNG

image of the Godot logo, as shown in Figure 2-7 (a). This resource file contains settings

for designing the game environment when working with the 3D editor. In this dock, you

can create folders and add files such as images of different characters for animation,

such as for running and walking, as shown in Figure 2-7 (b).

ChapTer 2 GeTTInG STarTed WITh GodoT

24

Figure 2-7. (a) The default FileSystem dock, (b) FileSystem dock showing the
game assets and game scene

 Scene Dock
Every scene has a set of nodes associated with it, as we’ll see later in the book. This dock

shows the hierarchy of nodes in a particular scene. You can also create the instance of a

scene using the icon and attach a script to a node using the icon. Figure 2-8 (a)

shows the default view of the Scene dock, while Figure 2-8 (b) shows an example of a

hierarchy of nodes used to create a game character. You can create a new node by

clicking the icon and searching for and choosing the node type, as shown in Figure 2-9.

ChapTer 2 GeTTInG STarTed WITh GodoT

25

Here, KinematicBody2D is the root node, while the Sprite and CollisonShape2D nodes

are its children. We will play around with this dock a lot when creating characters and

designing the game world.

Figure 2-8. (a) The default Scene dock, (b) a Scene dock showing a hierarchy
of nodes

ChapTer 2 GeTTInG STarTed WITh GodoT

26

 Inspector Dock
The Inspector shows you information related to a selected node in a scene.

For example, the Inspector dock shown in Figure 2-10 (a) shows the properties

related to the current node that is selected in the Scene dock, a Node2D. Properties

related to this node, such as its Position (relative to the parent node), Rotation in degrees,

and Scale can be seen and changed in the Inspector. The Node tab next to the Inspector

displays different signals related to the selected node, as shown in Figure 2-10 (b).

Signals are messages that are emitted by a node when an event occurs. For example,

when we click the Play button on the Title screen, we can tell Godot to start playing the

game scene using a certain built-in signal. We’ll take a look at signals in later chapters.

Figure 2-9. Nodes can be added to the Scene dock by picking them from the list or
manually typing their names in the search box

ChapTer 2 GeTTInG STarTed WITh GodoT

27

Figure 2-10. (a) The Inspector dock displays properties related to a selected node,
(b) the Node dock displays the signals related to a selected node

ChapTer 2 GeTTInG STarTed WITh GodoT

28

 Workspaces
Godot has both 2D and 3D workspaces for creating two-dimensional and three-

dimensional game scenes, respectively. Figure 2-11 shows the 2D workspace. You can

easily switch between the workspaces by clicking the and buttons. The and

 buttons next to them can be used to write the script for objects in your workspace

and access the Asset library, respectively.

Figure 2-11. 2D workspace

We will be working on the 2D workspace in this book. This workspace will be your

playground, where you’ll design characters and enemies and paint your game world

using tilesets, as we’ll see in later chapters. You can use your mouse scroll button to

zoom in and out, and you can move around the workspace by holding down the right-

click button while moving the mouse.

 Animation Panel
The Animation panel is present at the bottom of the workspace. It’s used for animating

AnimationPlayer nodes. For example, as shown in Figure 2-12, we can create an

animation of a rotating coin using this panel.

ChapTer 2 GeTTInG STarTed WITh GodoT

29

Figure 2-12. The Animation panel

 SpriteFrames Panel
The SpriteFrames panel is used to create 2D sprite animations using individual images.

It shows up only at the bottom of the workspace, next to the Animation panel, when

a SpriteFrames resource is loaded in the Frames field (in the Inspector dock) of an

animated sprite. We’ll see more about this when we work on player animation later.

You can create various types of animations using distinct images, called frames, of the

character you want to animate. You can make your character do various actions such as

climbing, running, sliding, walking, or staying idle in the game. For example, Figure 2-13

uses six-character frames, which form a running animation when played in a loop.

Figure 2-13. The SpriteFrames panel

ChapTer 2 GeTTInG STarTed WITh GodoT

30

 Output Panel
The Output panel lists all the changes you make in the interface, including the

workspace. It also displays the game output, warnings, and errors when a scene is run

from the editor. For example, Figure 2-14 shows that an object called CanvasItem was

moved twice in the workspace, and the position of a node was set to a particular value.

Note that if you face issues with your Output Panel, navigate to Editor ➤ Editor Settings

➤ Network ➤ Debug and change the Remote Port number, then re-run the project.

Figure 2-14. The Output panel

 Debugger Panel
The Debugger panel, or the Debugger, as shown in Figure 2-15, is a powerful tool that catches

bugs and runtime errors in your game and has tools for measuring game performance. A red

dot next to the Debugger indicates that there is an error that needs to be fixed.

Figure 2-15. The Debugger showing runtime error messages

ChapTer 2 GeTTInG STarTed WITh GodoT

31

 Audio Panel
The Audio panel, shown in Figure 2-16, is part of Godot’s audio engine and helps you

create audio buses to add music and sound effects to your game.

Figure 2-16. The Audio panel

 2D Toolbar
A 2D toolbar, shown in Figure 2-17, is present just above the 2D workspace. It has various

tools to manipulate objects placed in the workspace, such as moving, rotating, or scaling

an object, or making sure an object’s children are not selectable. The view button lets

you add grids and rulers to your workspace. The 3D toolbar offers slightly different tools

for use with the 3D workspace.

Figure 2-17. The 2D toolbar has tools for manipulating objects in the workspace

 Playtest Buttons
These buttons are used for playing, pausing, and stopping various game scenes. This is

shown in Figure 2-18. GLES3 indicates that the OpenGL ES 3.0 back end is being used in

this case.

ChapTer 2 GeTTInG STarTed WITh GodoT

32

Figure 2-18. The Playtest buttons

 Tips and Shortcuts
Here are some tips and shortcuts:

• The Dock sizes can be changed by dragging their edges left and right

or up and down.

• The + and x buttons at the top of the workspace can help you

instantly create or close a scene, respectively.

• By toggling the button next to a node in the Scene dock, you can

turn off the visibility of that node in the workspace.

• You can drag and drop game assets directly into the FileSystem dock.

• The buttons on the top left of the interface let you create and save

scenes and access the project and editor settings. The online

documentation can be accessed via the Help menu (at the top left of

the interface), by clicking the button. The offline

documentation can be accessed via the same Help menu, by clicking

the button. This button is also available on the Scripts tab.

• You can download tools and plugins for your game via the

button at the top of the workspace.

• You can also download other game demos and templates by

accessing the Asset Library from the Templates tab in the Project

Manager.

ChapTer 2 GeTTInG STarTed WITh GodoT

33

TRY IT!

Play Around with the Interface

 1. add different nodes to the Scene dock, and tinker with their properties in the

Inspector dock.

 2. Create a folder called assets in the FileSystem dock and add some images to it

from your computer.

 3. download a game demo or template of your choice from the assetLib (on the

Templates tab in the project Manager), and save it to a new project folder. open

the project and see it in action.

 Key Takeaways
In this chapter, you learned how to download and launch Godot and created your

first project. You also got your first look at the engine’s essential components such as

the FileSystem, Scene, and Inspector docks, the workspaces, and various buttons and

panels. You learned how to access the online and offline Godot documentation and were

introduced to a few tips and shortcuts related to the interface.

ChapTer 2 GeTTInG STarTed WITh GodoT

35
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_3

CHAPTER 3

GDScript in a Nutshell

 In this chapter, we’ll cover the basics of GDScript, the official scripting
language of Godot. We’ll learn about important programming concepts such as
variables, data types, operators, functions, dictionaries, and looping. If you want to
jump right into game creation, feel free to skip this chapter.

 What Is GDScript?
Behind every game, there is a programming language that powers it. GDScript is the one

that’s custom-made for Godot. It is simple, clutter-free, and tightly integrated with the

engine, with its creators deeming it easy for beginners to learn. It was created with the

intent of helping users focus on the engine rather than on spending time learning how

to integrate code written in other languages. It also enables developers to easily get rid of

bugs in the engine code and effortlessly introduce new features. That being said, Godot

also has support for other languages such as C++ and C#, among others, which are

primarily supported by the Godot community.

We’ll be using GDScript in this book to add life to our game by animating characters

and making them interact with the game world. If you prefer to learn as you practice,

feel free to skip this chapter and go on to the next one. Do note that the concepts you’ll

learn in the following pages are common to most programming languages, with the only

difference being in the syntax. Now, let’s dive into the basics of GDScript.

https://doi.org/10.1007/978-1-4842-7455-2_3#DOI

36

 Scripting
In GDScript, you add a script to a node to control its behavior. To start scripting and

trying out the examples given in this chapter, you will need to create a new project,

add a node to the scene, and attach a script to that node. Once you do that, you can

start scripting in Godot. For details of how to create a new project, you can refer to the

previous chapter. Now, let’s take a look at the other steps:

 (1). Adding a Node to the Scene

In the 2D workspace of your project window, go to the Scene dock

and click the button under Create Root Node. This will

create a node called Node2D. Then, save the scene by clicking

Save Scene As (Shortcut: Control + Shift + S) under the Scene tab

at the top-left corner of the engine window. The scene name

should be in the format SceneName.tscn (e.g., Node2D.tscn).

 (2). Attaching a Script to the Node

With the newly created Node2D being selected, click the button

to attach a script to this node. This will open a prompt called

Attach Node Script. Click the Create button. (The default path of

the script will be res://Node2D.gd, with Node2D.gd being the

script name.) This opens the scripting workspace, as shown in

Figure 3-1. You can type your code in this space and click the play

button at the top-right corner of the engine window to run your

code. You can click the stop button to stop running your script.

To view the output, click on the Output button present at the

bottom of the engine window, as shown in Figure 3-2.

 (3). Defining the Main Scene

After typing your script and clicking the play button to run it for

the first time, you'll be prompted to define the main scene. Click

the Select button, and another prompt called Pick a Main Scene

will pop up. Here, you should select the scene you saved in the

first step, e.g., Node2D.tscn, and click Open.

Now you’re all set to start writing and running some code!

Chapter 3 GDSCrIpt In a nutShell

37

Figure 3-2. The Output panel

Figure 3-1. The Scripting dock

Chapter 3 GDSCrIpt In a nutShell

38

 Variables and Data Types
A variable is an entity that can store data values. In Godot, it is represented by the

keyword var. Every variable is associated with a data type that tells us the nature of the

stored value. Different data types include integer, float, Boolean, and string. Let’s take a

look at them.

 Integer
• An integer is a whole number and can be positive, negative, or zero.

• It is represented by the keyword int.

• Examples: 5, 12, 1000, -25, 0 , -500

 Float
• A float is a fractional number that includes a decimal point.

• It is represented by the keyword float.

• Examples: 5.0, 12.4, 0.0002

 Boolean
• Boolean represents two conditions: true and false.

• It is represented by the keyword bool.

 String
• A string represents a word, sentence, or continuous series of

characters or numbers enclosed within quotes ("").

• Examples: "M", "ABCD", "1234", "This is a string"

Chapter 3 GDSCrIpt In a nutShell

39

 Declaring a Variable
Variables are used to store values that may change throughout your code. You can use

them to store data related to your game, such as a player’s score, the current game level,

and the speed of an object. To declare a variable, write the keyword var, followed by

an identifier, that is, the name you want to give the variable. You can choose to assign

a value to the identifier either during variable declaration, or in some other part of

the code.

In GDScript, identifiers can include any combination of uppercase and lowercase

alphabets, an underscore (_), and the digits 0 to 9. Identifiers cannot start with a digit

and are case-sensitive. This means you can call a variable Emily1234 but not 1234Emily.

Also, emily and Emily are considered to be two different string values. Here are some

examples of variable declarations:

(1) var player_name = "Eva"

(2) var score = 150

(3) var player_on_ground = true

(4) var distance = 10.5

(5) var total

 Explicit and Inferred Typing
When declaring a variable, you can choose to specify its type optionally.

Here are some examples:

(1) var fruit: String = "Pineapple"

(2) var fruit = "Pineapple"

In each of these cases, you store a string called Pineapple in the variable fruit. But

in the first case, you directly state that the value you are storing is a string, while in the

second case, this is inferred. The first method is called explicit typing, while the second is

called inferred typing.

Chapter 3 GDSCrIpt In a nutShell

40

 Constants
Constants are values that don’t change when you run a game. When you declare a

variable as a constant, its value stays the same throughout the code, and it can’t be

assigned any other value.

Here’s an example:

const LENGTH = 10

const SPEED: int = 100

 Enums
An enum is a group of constants and can be useful when you want each constant to be

associated with a consecutive integer. An enum can be written in multiple ways. Here are

some examples:

 1. const CIRCLE = 0

const SQUARE = 1

const RECTANGLE = 2

const TRIANGLE = 3

Can also be written as:

enum Shapes = {CIRCLE, SQUARE, RECTANGLE, TRIANGLE}

 2. const Player = {IDLE = 0 , RUN = 3, JUMP = 4}

Can also be written as:

enum Player {IDLE, RUN = 3, JUMP}

Values can be accessed by Player.IDLE, Player.RUN, Player.JUMP

Note Godot 3.1 and newer versions do not register keys in an enum as global
constants. You should access a key in an enum in the format Name.KEY, where
Name is the enum’s name.

Chapter 3 GDSCrIpt In a nutShell

41

 Keywords
Every programming language has specific words called keywords that are reserved.

These should not be used as identifiers, as they hold a special meaning to the compiler.

The following are some of the popular keywords of GDScript:

if elif else for

while match break continue

pass return class_name extends

var const enum func

static onready export signal

is as self tool

For the complete list of keywords, you can check out the official GDScript

documentation at: https://docs.godotengine.org/en/stable/getting_started/

scripting/gdscript/gdscript_basics.html#keywords.

 Comments
When you want to add comments in your code, you can do so by writing # followed by

the comment. These are ignored by the engine.

#This is an example of a comment

 Output
When you want to display a message or a variable value in the output, you can use the

print statement. You have to specify the text to be displayed within the quotation marks

and the variable value to be displayed after a comma. Examples include the following:

1. print("This is being displayed at the output!")

2. print("The total Sum= ",sum)

3. print(my_variable)

Chapter 3 GDSCrIpt In a nutShell

https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/gdscript_basics.html#keywords
https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/gdscript_basics.html#keywords

42

Note remember to use "straight" and not “curly” quotation marks in your
print statements; otherwise, it might cause an error!

 Functions
A function is an organized block of code that groups together related actions or tasks.

It helps make the code more readable by avoiding writing the same code in multiple

places. For example, you might have a function to calculate and display the total points

a player earns in a game. Since these points will keep changing throughout the game, we

can use this function every time we want to update the score.

The function _ready() is an important GDScript function that is called every time

a node is created in the Scene tree. Another important function is called _process

(_delta), which is executed for every frame in the game. Here, delta represents the total

time between each frame. These two built-in functions can be changed according to our

programming needs. We can also create our own functions for different tasks, such as

creating a coin-collection system, spawning enemies, and calculating player health.

Every function starts with the keyword func and can return a value that we can use

somewhere else in our code. You can also choose to pass values, called arguments, to a

function if you need to use them there.

In the first example given in the “Snippets of Syntax” on the next page, we declare a

function for printing a user’s name. This function, called print_my_name, has an input

parameter called my_name. We pass the string "Lisa" as an input to this function when

we call it in the _ready() function. In this way, the variable my_name stores the string

"Lisa", and the sentence "Hi, my name is Lisa" is printed at the output.

In the second example , we have a function called add that takes two numbers, num1

and num2, as input, prints each of them, and returns their sum to the _ready() function.

In _ready(), we declare a variable called my_sum and pass the values 5 and 6 to num1 and

num2, respectively. When we print the variable my_sum, the sum of these two numbers,

i.e., 11, is displayed at the output.

Chapter 3 GDSCrIpt In a nutShell

43

SNIPPETS OF SYNTAX

1. Passing and Printing a Name

func print_my_name(my_name):

 print("Hi, my name is ",my_name)

func _ready():

 print_my_name("Lisa")

Output

Hi, my name is Lisa

2. Passing Numbers to a Function and Adding Them Together

func add(num1, num2):

 print("num1 = ",num1)

 print("num2 = ",num2)

 return num1 + num2

func_ready():

 var my_sum = add(5, 6)

 print(my_sum)

Output

num1 = 5

num2 = 6

11

You can declare variables either locally (inside a function) or globally (outside of any

function). A local variable is visible only in the function in which it is declared, while a

global variable is visible to all the functions in the code. In the example shown earlier,

the variable my_sum is local to the _ready() function.

Chapter 3 GDSCrIpt In a nutShell

44

TRY IT!

Creating Your First Function

 1. Create a function called all_about_me, and pass your name, age, height, and

weight to it from _ready().

 2. using print statements, display this information at the output.

 Array
An array is a data type that stores a set of variables at different index positions. You

can think of it as a set of address locations, with each location holding a different value

or variable. Each stored item is called an element and can be accessed using its index,

starting from index 0. In the following diagram, Variable 1 is stored at index 0, Variable 2

at index 1, Variable 3 at index 2, and so on.

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

[0] [1] [2] [3] [4]

Here’s an example of an array called Games, which stores the names of four different

video games:

var Games = ["Mario", "Donkey Kong", "Pac-man", "Breakout"]

func _ready():

 print(Games[0])

 print(Games[1])

 print(Games[2])

 print(Games[3])

Output:

Mario

Donkey Kong

Pac-man

Breakout

Chapter 3 GDSCrIpt In a nutShell

45

As we see at the output, Mario is stored at index 0, Donkey Kong at index 1, Pac-man

at index 2, and Breakout at index 3. Taking this Games array as an example, let’s look at

some typical array functions.

 1. Count the number of elements, using size()

var num_elements = Games.size()

print(num_elements)

Output

4

Since Games has four different items, the output will be 4.

 2. Check whether it contains a specific element, using find()

print(Games.find("Pac-man"))

#Checks whether Pac-man appears in Games and returns the

index if found

Output

2

print(Games.find("Ms. Pac-man"))

#Checks whether Ms. Pac-man appears in Games

Output

-1

Since Pac-man is present at the index number 2 in Games, the output is 2 for this

case. On the other hand, since “Ms. Pac-man” is not part of Games, we get a value of -1 at

the output.

 3. Check the number of times an element occurs, using count()

var count_element = Games.count("Breakout")

print(count_element)

Output

1

As “Breakout” appears only once in Games, the output is 1.

Chapter 3 GDSCrIpt In a nutShell

46

 4. Add an item at the end of the array, using append()

Games.append("Tron")

print(Games)

Output

[Mario, Donkey Kong, Pac-man, Breakout, Tron]

In the previous example, we added Tron to Games.

 5. Shuffle the order of the items using shuffle()

randomize()

Games.shuffle()

print(Games)

Output

[Donkey_Kong, Tron, Breakout, Mario, Pac-man]

 Random Number Generation
There are tons of uses for a random number when you’re making a game:

• Spawning a random number of enemies during a game level

• Creating a luck-based computer card game

• Randomly generating elements in the game world, such as the map

• Spawning a random collectible or drop when the player beats

an enemy

In GDScript, you can generate random numbers using built-in functions that are

based on the concept of pseudorandomness. This means that a number is generated

using an algorithm and is thus not truly random. You can easily predict the number if

you’re familiar with the algorithm, but this is unlikely. To get a random number, we first

need to use the predefined function, randomize(), along with another function specific

to the type of random number we want. Let’s take a look at how this works.

Chapter 3 GDSCrIpt In a nutShell

47

 1. Random Integer Generation

func _ready():

 randomize()

 var random_int = randi()

 print (random_int)

Output

3252001091

The function randi() generates a random integer in the range of 0 to 4,294,967,295.

If we want to specify our own range, we can do so in the following way:

var rand_generator = RandomNumberGenerator.new()

func _ready():

 rand_generator.randomize()

 var random_int = rand_generator.randi_range(30,40)

 print (random_int)

Output

 36

We first have to declare a new random number generator, e.g., rand_generator,

and randomize it using the syntax shown earlier. Then, we can use the randi_range()

function to specify the range of possible values for our random number. In the case

shown earlier, a random integer between 30 and 40 is generated.

 2. Random Float Generation

func _ready():

 randomize()

 var random_float = randf()

 print (random_float)

Output

0.278825

Chapter 3 GDSCrIpt In a nutShell

48

The randf() function generates a random float between 0 and 1. If we want to

specify the range of values, we can do it as follows:

var rand_generator = RandomNumberGenerator.new()

func _ready():

 rand_generator.randomize()

 var random_float = rand_generator.randf_range(-1.5,5.0)

 print (random_float)

Output

4.950228

Here, we use randf_range() to specify our possible range of float values. The

example shown earlier generates a random float value between -1.5 and 5.0.

 Operators and Computation
Mathematics and logic are the two most essential ingredients of a code written in any

programming language. Godot uses simple mathematical, comparison, and logical

operators to perform calculations on variables. Let’s take a look at each of them.

 Mathematical Operators
Mathematical operators are used for simple calculations between two or more variables.

Table 2-1. Mathematical Operators

Operator Symbol Example

addition + var Sum = A + B

Subtraction - var Difference = A – B

Multiplication * var Multiply = A * B

Division / var Divide = A / B

Modulo (remainder) % var Remainder = A % B

Squareroot sqrt var Squareroot_A =sqrt(A)

Chapter 3 GDSCrIpt In a nutShell

49

Note the / operator calculates the quotient after division, while the % operator
calculates the remainder.

 Comparison and Logical Operators
Comparison operators compare the values between two variables, while logical

operators evaluate an expression based on certain logical conditions.

SNIPPETS OF SYNTAX

Mathematical Calculations Between Two Variables a and b

extends Node2D

var a = 50

var b = 20

var sum

var difference

Table 2-2. Comparison and Logical Operators

Operator Symbol Condition Description

equal to == A == B true if a is equal to B.

not equal to != A ! = B true if a is not equal to B.

less than < A < B true if a is less than B.

Greater than > A > B true if a is greater than B.

less than or equal to <= A < = B true if a is either less than B OR equal to B.

Greater than or equal

to

>= A > = B true if a is either greater than B OR equal to B.

and && A && B true if both a and B are true.

Or || A || B true if either a OR B is true.

not ! !A If a is false, then return true. If a is true, then return

false.

Chapter 3 GDSCrIpt In a nutShell

50

var multiplication

var division

var remainder

var squareroot_a

var squareroot_b

func _ready():

 print("a = ", a) #Printing the value of a

 print("b = ", b) #Printing the value of b

 sum = a + b

 print("sum= ", sum)

 difference = a - b

 print("difference= ", difference)

 multiplication = a * b

 print("multiplication = ", multiplication)

 division = a / b #a is divided by b

 print("division = ", division)

 remainder = a % b #Remainder when a is divided by b

 print("remainder = ", remainder)

 squareroot_a = sqrt(a)

 print("squareroot of a= ", squareroot_a)

 squareroot_b = sqrt(b)

 print("squareroot of b= ", squareroot_b)

Output

a = 50

b = 20

sum = 70

difference = 30

multiplication = 1000

division = 2

remainder = 10

squareroot of a = 7.071068

squareroot of b = 4.472136

Chapter 3 GDSCrIpt In a nutShell

51

 if-else Statements
Whenever we want to set certain conditions before executing a block of code, we can

write if-else statements. We use these statements when we want to tell the computer,

“If something happens, then do this; else do something else.” The keyword if checks

whether a certain condition is true and executes a certain portion of code if it is. If it’s

not, then we can check whether other conditions are true using elif statements and

specify the corresponding blocks of code that need to be executed for each particular

case. If none of the conditions is true, the code specified under the else condition is

executed.

SNIPPETS OF SYNTAX

let’s take a gaming scenario to see this logic in action:

If a player’s health is below or equal to 10%, the player needs to collect one healing
powerup to increase health to 50% and two healing powerups to increase health to
100% to continue playing the game. But if the player doesn’t collect any powerups and
the player’s health falls to 0, the game is over.

this can be represented by the following code:

extends Node2D

var health = 100 #Initial value that will change in the game

var powerup

func _ready():

 if health <= 10: #Check if Player's health is below or equal to 10 %

 if powerup == 1:

 print("You got one power-up! Health= 50%")

 elif powerup == 2:

 print("You got two power-ups! Health= 100%")

 else:

 print("Gameover!!")

 else:

 print("Health is more than 10%, you're safe")

Chapter 3 GDSCrIpt In a nutShell

52

Note Indentation is important in GDScript! Make sure to press the tab key every
time you write a new line of code inside a function and when you want to include
certain lines within an if, elif, or else statement.

TRY IT!

if-elif-else Statements

 1. Write the previous code in your Godot editor.

 2. assign the variable health any value between 0 and 100, and assign the

variable powerup any value between 0, 1, and 2.

 3. run the code for different values of health and powerup.

 Dictionaries
In GDScript, a dictionary can be thought of as a container that stores unique keys, as well

as different values associated with each of them. It’s similar to an array, but the stored

values do not have a corresponding index. Instead, you can look up a particular value by

searching for its key.

Let’s create a dictionary that holds information about the attributes of a game

character by storing key-value pairs in a variable called Player. Note that the dictionary

definition can be declared either inside a function (e.g. func _ready) or outside any of

the functions in the script. The print statements should be included within a function.

var Player = {"Type": "Wizard", "Age" : "500", "Strength" : "Magic",

"Weakness" : "Silver"}

print(Player.Type)

print(Player.Age)

print(Player.Strength)

print(Player.Weakness)

Chapter 3 GDSCrIpt In a nutShell

53

Output

Wizard

500

Magic

Silver

In this example,

• Type is the key, Wizard is the value.

• Age is the key, 500 is the value.

• Strength is the key, Magic is the value.

• Weakness is the key, Silver is the value.

As shown in the example, we can print every element of the dictionary by accessing

it using dictionary_name.key and replacing dictionary_name with the name of the

dictionary and key with the name of the key linked to the particular element we want

to access.

For instance, we can use Player.Strength to get the value Magic. We get the same

result if we use Player ["Strength"].

Let’s look at some of the things we can do with dictionaries. Note that the code

shown in the following examples (1 to 5) should be included within a function

(e.g. func _ready), and properly indented.

 1. Check if it’s completely empty.

if Player.empty():

 print("The dictionary is empty!")

else:

 print("It's not empty")

Output

It's not empty

Chapter 3 GDSCrIpt In a nutShell

54

 2. Check the number of elements.

var num_elements = Player.size()

print(num_elements) #displays the number of values stored

Output

4

 3. Check if it contains a particular key.

if Player.has("Hobby"):

 print("The key called Hobby exists")

else:

 print("No such key exits in this dictionary")

Output

No such key exists in this dictionary.

 4. Print all the keys.

var all_keys = Player.keys() #keys() returns all the keys

print(all_keys)

Output

[Type, Age, Strength, Weakness]

 5. Print all elements.

var elements = Player.values()

print(elements)

Output

[Wizard, 500, Magic, Silver]

 6. Add items.

func new_item (key,element_value):

 Player[key] = element_value

 print("The added key is: ",key)

 print("The added value is: ",Player[key])

 print("Updated dictionary: ",Player)

Chapter 3 GDSCrIpt In a nutShell

55

func _ready():

 new_item("Fav_Food", "pizza")

Output

The added key is: Fav_Food

The added value is: pizza

Updated dictionary: {Age:500, Fav_Food:pizza,

Strength:Magic, Type:Wizard, Weakness:Silver}

Fav_Food is the key, and pizza is the value that is passed to new_item()

from _ready().

 Looping
When we want to execute some part of the code multiple times, we use an important

programming concept called looping. There are two types of loops in GDScript: for

loops and while loops. Let’s explore each of them with examples.

 for Loop
Let’s look at an example of an array that holds the player’s score during each game level,

for a total of four levels. This means that the array stores the player’s level 1 score at index

0, level 2 score at index 1, level 3 score at index 2, and level 4 score at index 3. We can use

a for loop for iterating through each of these values.

To access every item in the array, we define our own variable name that points to the

current item. Every time the code inside the loop is executed, this variable then points to

the next item in the array. In this way, we can access each of the array elements.

extends Node2D

var Level_Score = [0,10,40,60]

var Total_Score = 0

func _ready():

 for current_score in Level_Score:

 Total_Score = current_score + Total_Score

 print("Total score = ", Total_Score)

Chapter 3 GDSCrIpt In a nutShell

56

In the example given earlier, we first define an array called Level_Score to store

the player’s points during each level. We also declare a variable called Total_Score

for storing the result of the addition of all the elements in this array. Next, use a for

loop with an iterative variable called current_score, which loops through all the array

elements, starting from the element at index 0. After a cumulative addition of all the

points inside the for loop, we display the result at the output. We can also use for loops

for looping through numerical ranges, strings, and even dictionaries.

Some other examples of for loops include the following:

 1. Print all the characters in a string.

 func _ready():

 for ch in "GODOT":

 print(ch)

Output

G

O

D

O

T

 2. Iterate over values from num = 0 to 4.

 func _ready():

 for n in 5:

 print(n)

Output

0

1

2

3

4

Chapter 3 GDSCrIpt In a nutShell

57

 3. Iterate over a range of n = 10 to 15.

func _ready():

 for n in range(10,15):

 print(n)

Output

10

11

12

13

14

 4. Skip certain numbers in an iteration.

func _ready():

 for n in range(10,20):

 if(n<=14):

 continue #values below 15 are not printed

 if(n==18):

 break #values after 18 are not printed

 print(n)

Output

15

16

17

Note the continue keyword is used to skip a certain iteration of a loop and
to continue with the next iteration. the break keyword is used to skip all the
remaining iterations and break out of the loop.

Chapter 3 GDSCrIpt In a nutShell

58

 5. Iterate over a dictionary and print all the values.

func _ready():

 var player_points = {"P1":10, "P2":50, "P3":80}

 print("Leaderboard: ")

 for key in player_points:

 print(key, " = ", player_points[key], " points")

Output

Leaderboard:

P1 = 10 points

P2 = 50 points

P3 = 80 points

 while Loop
We can use while loops in cases where we have to continuously execute some code until

a certain condition is reached. Let’s see an example:

extends Node2D

var points = 10

var total_score = 0

func _ready():

 while (total_score <= 200):

 total_score = total_score + points

 print("Total score so far = ", total_score)

 if(total_score == 100):

 print("You got 100 points! You won!")

 break

In the above example, we have written a while loop for updating the total_score

continuously by cumulatively adding 10 points to it, until total_score reaches a value of

200. The current value of total_score is displayed every time 10 more points are added

to it. But once the total_score reaches a value of 100, the break statement causes the

while loop to end, and the statement, “You got 100 points! You won!” is displayed in

the output.

Chapter 3 GDSCrIpt In a nutShell

59

TRY IT!

Dictionaries and Loops

 1. Create a GDScript dictionary of five of your favorite movies, assigning a

different key to each of them.

 2. Write a script for checking whether the dictionary is empty and for checking

whether a certain key exists. print all the keys and values in the dictionary.

 3. Write a for loop to display each of the items in your dictionary at the output.

 Key Takeaways
In this chapter, we took a brief look at the basic concepts related to GDScript. We first

looked at how to start scripting with Godot’s IDE. Then, we learned about different kinds

of variables and data types, keywords, constants, and enums. We also explored how

different mathematical operators, functions, arrays, dictionaries, and looping are used in

GDScript through examples. In addition, we found out how to randomize different types

of variables and use them in our code.

Chapter 3 GDSCrIpt In a nutShell

61
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_4

CHAPTER 4

Exploring Game Physics

 In this chapter, you’ll learn about concepts related to game physics and get
introduced to the concept of collision bodies. The chapter also talks about how
various bodies interact with each other through the introduction of forces such as
gravity. We’ll create rigid bodies and static bodies in our first game scene and play
the scene to watch them in action.

 Collision Objects
When you develop a game, you’ll want to control what happens when certain objects

in a scene come into contact with each other. For example, when the player jumps onto

a springboard, you want the player to jump to a certain height. If the player falls into a

pit full of spikes, you want to detect this and declare “Game Over!” for the player. This is

where the concept of collision bodies comes into the picture.

In terms of game development, a collision body is an object with a definite shape

whose behavior is controlled by in-game physics. You can decide what happens when

these collision bodies interact with each other. You might want them to bounce back

when they collide or even allow one to pass through the other. For example, when we’re

making a platformer, we want our character to stay on the ground and not fall through it.

In this case, the platformer and the ground are both collision bodies that do not merge

into each other when coming into contact.

https://doi.org/10.1007/978-1-4842-7455-2_4#DOI

62

In Godot, there are different types of collision bodies:

• RigidBody2D: Detects collisions, is affected by forces such as gravity

that are applied to it, and acts according to game physics.

• StaticBody2D: Detects collisions but stays in one place even after

collision.

• KinematicBody2D: Detects collisions but is not affected by game

physics; instead, its behavior is controlled by the user’s code.

In addition, there is one more type of physics body:

• Area2D: Detects when particular objects come into contact and when

they enter or leave a specific area. An Area2D is not affected by other

bodies in the same way as the other three physics bodies given in the

previous list.

In this chapter, we’ll create rigid bodies and static bodies in our game scene and

observe what happens when they collide with each other. But first, let’s learn more about

Godot’s node-scene architecture.

 The Node-Scene Architecture
Godot’s creators describe the engine as your kitchen, where you, the chef (game

developer), get to create new recipes (games) using different ingredients (nodes and

scenes). In fact, nodes are the basic building blocks of your game, while a scene is what

the player sees when the game is playing. As you saw in Chapter 2, every scene in Godot

is associated with a set of nodes. You can choose from tons of different nodes to add

to your game scene, such as nodes for displaying images, nodes for creating collision

bodies, or even nodes for game animations and music. A scene consists of one or more

nodes arranged hierarchically (like a tree).

You can assign a node to be the child of another node, with the only requirement

being that the children of a particular parent node should all have unique names.

Figure 4-1 shows an example of a parent-child node hierarchy. Here, MyGame is the

main or root node of the scene, with Player and Player2 being its child nodes. Each of

these child nodes, in turn, has two children each, called CollisionShape2D and Sprite.

ChapTer 4 explorIng game physICs

63

Figure 4-1. An example of a parent-child node hierarchy

Every game can have multiple scenes that can be saved and loaded back later. For

example, every game level can be a different scene, and each of them can be loaded

according to how the game progresses. So after a player finishes the first level, the scene

for Level 2 can be loaded. If the player loses the game at any point, the scene that shows

the “Game Over” message can be loaded. We’ll look at this in later chapters. For now,

let’s take a look at how to create nodes for collision bodies and add them to our scene.

 Adding Nodes to the Scene
Nodes can be created via the Scene dock located on the top-left side of the engine

interface. There are options for adding different types of nodes such as 2D, 3D, and

control nodes (User Interface nodes). Since we are working in 2D, we will add only 2D

nodes. To add the first node to a Scene go to the Scene dock, and click the 2D Scene

button under Create Root Node, as shown in Figure 4-2. This creates a node called

Node2D, which will be the main parent node, called the root node of our scene.

To rename a node, right-click it and choose the Rename option from the menu

that pops up, as shown in Figure 4-3 (a). Then, type in the new name of your choice.

An easier alternative is to double-click the node to rename it or to use the keyboard

shortcut F2. Let’s rename our root node to GameLevel, as shown in Figure 4-3 (b).

ChapTer 4 explorIng game physICs

64

Figure 4-3. (a) Renaming a node, (b) node is renamed to GameLevel

Figure 4-2. Adding a root node to the scene

ChapTer 4 explorIng game physICs

65

 Creating a Rigid Body
Now, let’s add a rigid body (represented by the node RigidBody2D) as a child of GameLevel

by clicking the button in the Scene dock. We can also do this by right-clicking GameLevel

and selecting the Add Child Node option. A window pops up, and we are presented with a

list of all possible nodes we can add to the scene. We can do either of the following:

• Enter the name of the type of node we are looking for in the search box.

• Navigate the path pointing to the node by expanding the tree structure.

Click the small arrow on the left of a node to see its expanded list.

As shown in Figure 4-4, RigidBody2D can be found under this path:

Figure 4-4. Path to RigidBody2D in the Create New Node window

Node ➤ CanvasItem ➤ Node2D ➤ CollisionObject2D ➤ PhysicsBody2D ➤

RigidBody2D

ChapTer 4 explorIng game physICs

66

Note rigidBody2D, staticBody2D, and KinematicBody2D are nodes that
represent physics bodies. They are children of the parent node physicsBody2D,
which, in turn, is a child of the Collisionobject2D node.

Under PhysicsBody2D, select the node called RigidBody2D, and click the Create

button. This node will automatically be created as a child of our root node, GameLevel,

as shown in Figure 4-5. Don’t worry about the yellow icon that shows up next to

RigidBody2D; we’ll see how to get rid of it a little later.

Figure 4-5. Creating RigidBody2D as a child node of GameLevel

 Adding a Sprite Node
RigidBody2D represents our first collison body, that is, a rigid body that we want to add

to the scene. But we can’t see anything yet on the editor screen! We first need to add a

node called a sprite as its child. Click the RigidBody2D node in the Scene dock to select

it, and then click the button to add a Sprite node as its child. Just like we did

ChapTer 4 explorIng game physICs

67

before, to add the Sprite node, either type Sprite in the search box of the Create New

Node window, or navigate to it using the following path:

Node ➤ CanvasItem ➤ Node2D ➤ Sprite

Once you click the Create button, a Sprite node is created as a child of

RigidBody2D. When you do so, your node hierarchy should look something like

Figure 4-6 (a), not like Figure 4-6 (b).

Figure 4-6. (a) Correct hierarchy, (b) incorrect hierarchy

Note To create a child node, you have to keep the intended parent node selected
before adding the new node. you’ll notice that by default if you don’t select any
node and just go ahead and add another one, the created node becomes the child
of the root node. you can also drag a node on top of its intended parent node, if you
want to make the first node a child of the second node.

We still can’t see anything on the editor! Why so? This is because every sprite needs

an image file as its texture to be able to see it. Select the Sprite node with a single click,

and take a look at the inspector on the right side. As shown in Figure 4-7, the Texture

field shows “[empty].” We need to add an image to this field. This image will determine

how our RigidBody2D will look.

ChapTer 4 explorIng game physICs

68

But where do we get this image from? We can either use the default PNG image that

Godot provides or import one into our FileSystem dock. If you want to use your own

image, drag and drop it into this dock from anywhere on your computer. For now, let’s

use the default image, called icon.png. Drag and drop this image from the FileSystem

dock onto the Sprite node’s Texture field in the Inspector dock. When you do that, you’ll

see the image pop up on your workspace, as shown in Figure 4-8.

Figure 4-7. The Texture field of the Sprite node in the Inspector dock is empty

Figure 4-8. Assigning an image to the Texture field of the Sprite node

ChapTer 4 explorIng game physICs

69

But hold on. Don’t move around the sprite yet! If you do that, the RigidBody2D node

will stay in its current position (at the origin), while the sprite will move. We don’t want

that! We want the sprite image to be the display image of the RigidBody2D. To lock them

together so that they can move around as one unit, select RigidBody2D, and then click

on the icon next to the lock icon on the 2D toolbar, as shown in Figure 4-9.

Figure 4-9. Making sure the parent node’s children are not selectable so that they
move together as one unit

As you can see, this icon lets us bundle up the parent-child nodes as one unit by

making sure that we cannot separately move around the child nodes. Once we do that,

the icon appears next to the RigidBody2D node in the Scene dock.

But wait, there is another issue we need to solve first: the scary-looking icon next

to RigidBody2D. When we hover over or click this icon, we get a “Node configuration

warning” message, shown in Figure 4-10. This simply means that we have not yet

assigned any shape to our rigid body, so it cannot collide or interact with any other

objects we might add to the scene. Let’s see how to do that next.

Figure 4-10. “Node configuration warning” message

ChapTer 4 explorIng game physICs

70

 Adding a Collision Shape
When we add a collision body to our scene, we need to tell Godot what kind of shape it

has. You can think of this shape as being a force field around the body and will determine

the way the body will move after colliding with another body or object.

Let’s assign a shape to our RigidBody2D node. To do so, we need to create another

node, called CollisionShape2D, as a child of RigidBody2D. Just like we did before, select

the RigidBody2D node in the Scene dock by single-clicking it, and then click the

button to create a CollisionShape2D as its child. Either search for CollisionShape2D in

the search box of the Create New Node window, or navigate to it under Matches by

expanding the tree structure as follows:

Node ➤ CanvasItem ➤ Node2D ➤ CollisionShape2D

This is shown in Figure 4-11.

Figure 4-11. Path to CollisionShape2D node in the Create New Node window

ChapTer 4 explorIng game physICs

71

Your node hierarchy should look like Figure 4-12 (a) and not like Figure 4-12 (b).

Figure 4-12. (a) Correct hierarchy, (b) incorrect hierarchy

Also, Figure 4-13 (a) and (b) are both correct.

Figure 4-13. (a) Sprite comes before CollisionShape2D, (b) sprite comes after
CollisionShape2D

ChapTer 4 explorIng game physICs

72

Note The order of the children nodes do not matter here. If your
Collisionshape2D node comes before the sprite node instead, it’s correct too. The
only important thing is that the Collisonshape2D and sprite nodes should both be
children of rigidBody2D.

You’ll notice that the icon next to the RigidBody2D node disappeared, but

now another one appeared next to CollisionShape2D! You can see this in Figure 4-14.

This time, the warning message tells us that we need to assign a shape to

CollisionShape2D. Let’s solve this.

In the Scene dock, select the CollisionShape2D node, and then head over to the

inspector window. We can assign a shape to this node using the drop-down menu

under the Shape field. As shown in Figure 4-15, we can choose from several shapes,

such as a capsule, circle, rectangle, etc. Let’s select the RectangleShape2D. This creates a

rectangular collision area for our rigid body. When we do that, the error message that we

encountered earlier is gone.

Figure 4-14. “Node configuration warning” message prompting you to assign a
shape to CollisionShape2D

ChapTer 4 explorIng game physICs

73

Figure 4-15. Adding a rectangle shape to CollisionShape2D

As shown in Figure 4-16 (a), a blue-colored rectangle with small orange dots on its

edges appears on top of the sprite in the editor space. If we hide the Sprite node by

clicking the toggle visibility icon next to it in the Scene dock, we can see this rectangle

clearly, as shown in Figure 4-16 (b). This is the body’s collision area, which will collide

with other physics bodies. But it’s too small to see.

Figure 4-16. (a) The RectangleShape2D appears on top of the sprite, (b) visibility
of the Sprite node can be toggled to see the blue RectangleShape2D

Zoom in the editor either by clicking the Zoom icon on its top-left corner or by

using the scroll button on your mouse (if it has the scroll wheel) with your cursor on

the editor window. You can move around the editor by moving your mouse around

while holding down the right-click button in the editor space. Now, unhide the Sprite

node by clicking the icon. Next, click and drag the orange dots so that the blue

ChapTer 4 explorIng game physICs

74

rectangle, that is, the collision shape, is almost equal to the size of the sprite. You

should see either Figure 4-17 (a) or 4-17 (b), depending on your node hierarchy.

Figure 4-17. (a) RectangleShape2D behind the Sprite node,
(b) RectangleShape2D in front of the Sprite node

Note If in your scene hierarchy, your Collisionshape2D comes first before the
sprite, as shown in Figure 4-13 (b), the rectangle collision shape won’t be visible
since it will be behind the sprite. It doesn’t matter, as long as you can see the
orange dots. you can change the order of the nodes in the scene dock. If your
hierarchy looks like Figure 4-13 (b), you can click and drag the Collisionshape2D
node and release it on top of the parent node, rigidBody2D (or release it just below
the sprite, on top of a blue line that appears). now, your hierarchy will look like
Figure 4-13 (a), and you will see Figure 4-17 (b) in your editor.

 Playing Your First Scene
Now, we haven’t saved our scene yet. To do so, navigate to Scene ➤ Save Scene As from

the toolbar at the top-left corner of the interface (Ctrl+Shift+S). In the window that

pops up, give the scene a name, in this format: SceneName.tscn. By default, the scene

is named after the name of our root node. Since we renamed our root node GameLevel,

the scene name of GameLevel.tscn is suggested when we try to save the scene, as

shown in Figure 4-18. This saved scene appears on the FileSystem dock and is saved as a

resource there.

ChapTer 4 explorIng game physICs

75

Figure 4-18. Saving the scene

We have created our first rigid body! Let’s play the scene to see it in action. To do so,

click the Play Scene button (keyboard shortcut F6) in the playtest buttons toolbar at

the top-right corner of the interface. If you play the project using the button (keyboard

shortcut F5), a window pops up telling us that “No main scene has been defined” and

asks us to select one, as shown in Figure 4-19. We saw this in the previous chapter. Click

Select, then choose the scene we just created, i.e., GameLevel.tscn, and then click Open.

Figure 4-19. Prompt to set the main scene

ChapTer 4 explorIng game physICs

76

Once we do that, our scene starts playing in a separate debug window, as shown in

Figure 4-20. Notice how the rigid body briefly appears in the top-left corner and then

falls down quickly and goes off the screen! This is because our rigid body, being a physics

body, follows the rules of in-game gravity. The body will keep falling forever if we don’t

put another object in the scene to stop it.

In the editor, let’s drag our rigid body from the top-left corner (the origin) to the

center of our game scene so that it appears in the middle, and not the left corner, when

we play the scene. The visible area of our game is indicated by the faint purple, pink, and

green lines that form a rectangle in the editor. Now when we play the scene, our rigid

body falls down from the middle portion of the screen, as shown in Figure 4-21.

Figure 4-21. The rigid body falls down near the middle of the game scene

Figure 4-20. The rigid body falls down in the left corner of the game scene

ChapTer 4 explorIng game physICs

77

Note make sure that the rigidBody2D’s children, that is, the sprite and
Collisionshape2D nodes, are set to not selectable before moving around the
rigid body in the editor! remember, you can do this by selecting the parent node
(rigidBody2D) and clicking the icon next to the lock button on the 2D toolbar.

 Properties of RigidBody2D
Select the RigidBody2D node in the Scene dock, and take a look at the Inspector dock.

This node has a bunch of different physics properties that we can play around with, as

shown in Figure 4-22.

Figure 4-22. Physics properties of RigidBody2D

ChapTer 4 explorIng game physICs

78

By applying forces to a rigid body such as gravity and by changing its properties, you

directly affect the physics simulation that controls the behavior of the body. For example,

you can change the mass, weight, and mode of the body.

The mode can be set to rigid, static, character, or kinematic. Different modes change

how 2D physics affects the object. For example, if you set the mode as rigid, the body

falls under the influence of gravity and can collide with other bodies or objects in the

scene. Setting it as static, however, will cause it to remain fixed on the screen. Let’s look

at more properties that we can change and the effect they will have on our rigid body.

• Gravity scale: Increasing the gravity will cause the body in the scene

to fall faster, while decreasing it will cause the body to fall slower.

• Linear velocity: Increasing the velocity in the x-direction will cause

it to move to the right as it falls, while increasing the velocity in the

y-direction will cause the body to fall down faster.

• Angular velocity: Applying an angular velocity to a rigid body will

cause the body to rotate as it falls.

• Applied force: An external force can be applied to the body in the x or

y direction.

 Duplicating a Node
If we want to have a number of similar objects in our scene, it is time-consuming to

create each of them, one by one. In such cases, it’s more convenient to create multiple

copies of a node and change the properties for each individual node. If we want to

replicate a node along with all of its children, select the node under the Scene dock, and

then use the keyboard shortcut Ctrl+D. Another way is to right-click the node we want to

replicate and then select the Duplicate option.

Now, let’s use this method to add a second rigid body to our game scene and see

how it interacts with the first one. Select RigidBody2D in the Scene dock, and use the

keyboard shortcut Ctrl+D. This creates a copy of this node, called RigidBody2D2, as

shown in Figure 4-23 (b). This node has exactly the same children, as well as properties,

as the original node, RigidBody2D. But the new node gets pasted on top of the first node,

as shown in Figure 4-23 (a), so you need to move it around to see it.

ChapTer 4 explorIng game physICs

79

Figure 4-23. (a) The duplicated node RigidBody2D2 pasted on top of
RigidBody2D, (b) moving the RigidBody2D2 node next to RigidBody2D node

After doing that, play the scene by clicking the button. This time, you’ll notice that

both the rigid bodies fall at the same time, at the same speed. This is because both of

these are identical, as they are duplicates of each other. If you select one of the rigid

bodies, say RigidBody2D2, and increase its gravity scale in the Inspector dock, you’ll

notice that it falls faster than the other one. See Figure 4-24. The same goes for any of its

other properties; changing them for one of the rigid bodies will cause both of the rigid

bodies to behave differently.

Figure 4-24. RigidBody2D2 falls faster if its gravity scale is more than that of
RigidBody2D

ChapTer 4 explorIng game physICs

80

TRY IT!

Your First Game Scene

 1. Create three rigid bodies in your game scene, and assign each of them child

nodes: Collisionshape2D and sprite.

 2. Change the properties such as gravity, angular velocity, etc., for each of them.

 3. play the game scene to see them in action!

 Creating a Static Body
We’ve learned how to create a rigid body whose behavior is influenced by game physics.

Now, let’s add another type of physics body in our scene, one that doesn’t fall due to in-

game gravity: a static body. As it is independent of the other objects in our scene, that is,

the two rigid bodies, we will create a static body as a child of our root node, GameLevel.

First, select the root node, GameLevel, in the Scene dock, and click the Add Child

Node button and add a StaticBody2D node by either searching for it in the search box

or navigating to it under the following tree path:

Node ➤ CanvasItem ➤ Node2D ➤ CollisionObject2D ➤ PhysicsBody2D ➤

StaticBody2D

Figure 4-25 shows this path. Click the Create button, and a new node, StaticBody2D,

is created as a child of GameLevel.

ChapTer 4 explorIng game physICs

81

Figure 4-25. Path to the StaticBody2D node in the Create New Node window

Just like every other node, StaticBody2D is created at the origin by default, that is, at

the intersection of the green, pink, and red lines in the editor, as shown in Figure 4-26.

Figure 4-26. The StaticBody2D is created at the origin

ChapTer 4 explorIng game physICs

82

Make sure that the static body’s children are nonselectable; that is, group its children

with it by clicking the icon. This will ensure that when you move the static body

around in the editor, its children will move along with it.

The next few steps are the same as the ones for rigid bodies that we

implemented before.

 1. A icon appears next to StaticBody2D, warning us that our static

body has no shape assigned to it, so it cannot interact with other

scene objects. Fix it by adding a CollisionShape2D as its child.

 2. Another warning pops us, prompting us to choose a shape for

our static body. Select the CollisionShape2D, and select New

RectangleShape2D from the Shape drop-down menu in the

Inspector dock.

 3. Add a sprite as a child of the static body, and drag and drop an

image, e.g., icon.png, found in the FileSystem dock, to the Texture

field of the Sprite node in the Inspector dock.

 4. Select the CollisionShape2D node that is the child of

StaticBody2D, and resize it to fit the sprite.

Just a refresher, the CollisionShape2D node can be found under the path:

Node ➤ CanvasItem ➤ Node2D ➤ CollisionShape2D

And, the Sprite node can be found under this path:

Node ➤ CanvasItem ➤ Node2D ➤ Sprite

We now have two rigid bodies and one static body in our scene, as shown in

Figure 4-27.

ChapTer 4 explorIng game physICs

83

Figure 4-27. Two rigid bodies and one static body in the game scene

Unlike a rigid body, the static body isn’t affected by gravity; hence, it doesn’t fall

down when you play the scene. Let’s see this in action.

 1. First, let’s position StaticBody2D under the two rigid bodies in

the editor.

 2. Next, resize the static body by selecting the CollisionShape2D

node of the StaticBody2D in the Scene dock, and making it bigger

than both the rigid bodies’ lengths by dragging the orange dots, as

shown in Figure 4-28.

 3. Then, make the sprite of the static body bigger by selecting its

node in the Scene dock and then dragging the orange dots that

show up in the editor, as shown in Figure 2-29.

ChapTer 4 explorIng game physICs

84

Figure 4-29. Resizing the sprite of the StaticBody2D

Figure 4-28. Resizing the collision shape of the static body

ChapTer 4 explorIng game physICs

85

With the static body positioned under both of the rigid bodies, play the scene by

clicking the button. Notice how the static body breaks the fall of the rigid bodies!

When the two rigid bodies come into contact with the static body, they stay on its surface

and stop falling further. We can see this in Figure 4-30.

Figure 4-30. When the two rigid bodies come into contact with the static body,
they stop falling

TRY IT!

A Game Scene with Rigid and Static Bodies

 1. Create a game scene with two rigid bodies and four static bodies.

 2. position the static bodies in a row below the two rigid bodies.

 3. play the game scene to see them in action!

ChapTer 4 explorIng game physICs

86

 Key Takeaways
In this chapter, we learned about Godot’s node-scene architecture and how to create

and add new nodes to a game scene. We also learned about different collision bodies

in Godot and how they are affected by in-game physics. We created two rigid bodies

and one static body in a game scene and saw how changing different properties such as

gravity affects their behavior when they interact with each other.

ChapTer 4 explorIng game physICs

PART III

Designing the Game

89
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_5

CHAPTER 5

Adding Game Graphics

 In this chapter, you’ll learn how to obtain as well as import game assets
according to the theme of our game. We’ll create a simple game scene with a
ground and sky, as well as create our main character. We’ll also place our
character in this game scene and write a simple script to control it using custom
keyboard input.

 What Are Game Assets?
Game assets form the basic essence of your game. They include the following:

• Game art for your characters, enemies, coins, and background

• Fonts, buttons, and images for designing the game GUI

• Music and sound effects

• Scripts for making your game work

There are two ways to get the game assets you need. You can make them yourself,

or you can easily get them from certain websites. The first option might be time-

consuming, based on your skills and your ability to use the tools required to make them.

In fact, many people use software such as Blender and Autodesk Maya to make 2D as

well as 3D game art and even sell these creations for profit.

But as a first-time game developer, you might want to stick to the second option for

now and use the premade assets available online. We’ll be following this approach in our

book. Now, let’s take a look at some popular websites that offer game assets.

https://doi.org/10.1007/978-1-4842-7455-2_5#DOI

90

 OpenGameArt.org
This website offers a huge number of 2D and 3D art, tilesets, textures, music, and sound

effects. All are absolutely free to use, even in commercial projects. You just need to give

credit to the creators of these files according to the specified license. See Figure 5-1.

Figure 5-1. OpenGameArt.org

Chapter 5 addIng game graphICs

91

 Itch.io
This website also provides thousands of free, as well as paid, 2D and 3D art files, music,

sound effects, and environment designs for all kinds of game genres. Each file has its

own license and terms of use. See Figure 5-2.

Figure 5-2. Itch.io

Chapter 5 addIng game graphICs

92

 Gameart2D
The character sprites, tilesets, and game GUI on this website are cute, cartoon-styled

creations. Most of the artwork is paid, but there are quite a number of freebies as well.

See Figure 5-3.

Figure 5-3. Gameart2D

Chapter 5 addIng game graphICs

93

 Kenney.nl
This website provides a large number of hand-crafted 2D and 3D asset packs, music and

background sounds, and UI components. Most of them are free or available at a nominal

price. See Figure 5-4.

Figure 5-4. Kenny.nl

 Choosing the Right Assets
When choosing the graphics for your game, you need to first think about its type and

theme. The game art for a hyper-realistic first-person shooter will be quite different from

the one used for making a 2D, pixel-based platformer!

We’ll be focusing on creating a 2D platformer game in this book. Here are some ideas

for the type of characters and environment props you can include, according to the theme:

• Sci-fi: Aliens, astronauts, spaceships, minerals, planets

• Fantasy: Kings and queens, knights, dragons, mythical creatures,

dungeons, castles

• Jungle/forest: Trees, squirrels, tigers, foxes, mushrooms, grass

• Horror: Zombies, ghosts, wizards, dark scenery

Chapter 5 addIng game graphICs

94

Once we decide the theme, we need to gather various assets, such as sprites for the

player, enemies, and collectibles, as well as tilesets and background images for designing

the game world.

Note an image of a game object such as a character or collectible is called a
Sprite. a sprite sheet is a large image that contains a bunch of sprites arranged in
rows and columns. sprite sheets usually consist of a series of images that can be
used for animating a game object, e.g., player actions such as running, jumping, or
climbing.

 Importing Game Art
The process of importing game art into our Godot project is surprisingly easy. Just drag

and drop your images from the computer onto the Godot FileSystem dock, as shown

in Figure 5-5. The imported game art may look blurry due to filtering by the engine. To

prevent this, select the image files in the FileSystem dock, and, in the Import dock (next

to the Scene dock), unselect the Filter property, and then click Reimport.

Figure 5-5. Importing images into Godot

Chapter 5 addIng game graphICs

95

TRY IT!

Importing Game Assets

 1. decide the theme for your game, and think about the type of characters and

props you want to include.

 2. Find and download some game art that suits the theme.

 3. Import them into your godot project.

 Creating the Main Game Scene
At this point, with our assets ready, we can start developing our game. First, we’ll create

the main game scene. We’ll use the image of a platform for creating a ground for the

player to move on. Next, we’ll create our character that can be controlled with the arrow

keys on our keyboard. Finally, we’ll place our character in the main game scene with the

simple environment that we created! But before all that, let’s take a look at how we can

create reusable game objects.

 Creating Game Objects as Scenes
Each basic component that is placed in our game, such as a character, an enemy, or a

collectible, is known as a game object. After creating one for the first time, you might

want to use it in different parts of your game. For example, every level of your game

might have multiple copies of a certain type of coin. You’ll also want your character to be

present in every level.

To make game objects such as these reusable, we can create the object (or objects)

as its own scene. Then, we can create an instance of that object whenever we want to

use it in a particular scene. This means that whenever we want to change some aspects

related to that object, we just have to modify it once, and it automatically gets updated

in all the scenes in which it is used. For example, we have to create our player in one

game scene and hence only once. When we design a game level in another scene, we

can just create an instance of our player in this second scene, and our player will pop

Chapter 5 addIng game graphICs

96

up in it. If we change a player’s sprite in the scene in which it was created, it will change

throughout the entire game. Now, let’s take a look at a hands-on example. We’ll first

create the main game scene. In this scene, we’ll create static bodies for representing the

ground. We’ll add the background image for the sky at a later stage.

 Designing the Main Game Scene
Follow these steps:

 1. Create a new Godot project, giving it the name of your game, such

as Jump N Run. Then, click on the 2D button at the top of

the interface to open and start working in the 2D workspace.

 2. Under the Scene dock, click the 2D Scene button to create the root

node called Node2D.

 3. Next, select the Node2D node in the Scene dock, and click the Add

Child Node button (keyboard shortcut: Control A) to add

another node called StaticBody2D as its child, as shown in

Figure 5-6. As shown in the previous chapter, we can either search

for a particular node by typing it in the Search box or navigate to it

by expanding the node hierarchy under Matches.

Chapter 5 addIng game graphICs

97

Figure 5-6. Creating a StaticBody2D node

 4. Once you click the Create button, StaticBody2D will be created as

a child of the root node, Node2D. Just as we saw in the previous

chapter, a warning icon appears next to StaticBody2D, prompting

us to add a collision shape for our static body. This is shown in

Figure 5-7.

Figure 5-7. Node configuration warning

Chapter 5 addIng game graphICs

98

 5. Select the StaticBody2D node in the Scene dock, click the Add

Child Node button, and then search for or navigate to

CollisionShape2D. Click the Create button, and this node will be

assigned to be the child of StaticBody2D, as shown in Figure 5-8.

Figure 5-8. Creating a CollisionShape2D node

 6. We need to assign a collision shape to the CollisionShape2D

node, as prompted by the warning sign next to it. But first, let’s

add a Sprite node as a child of StaticBody2D. To do so, select

StaticBody2D under the Scene dock; then navigate to the sprite, as

shown in Figure 5-9, and click the Create button.

Chapter 5 addIng game graphICs

99

Figure 5-9. Creating a Sprite node

 7. We need to assign an image as a texture for our Sprite node. Since

we want our StaticBody2D to be the platform in this game scene,

let’s assign an image of a platform as the texture of this node. Just

as we saw previously in this chapter, to import an image into your

project, just drag and drop the image into the FileSystem dock

from your computer. If you haven’t already done so, import the

image of a platform into your project, as shown in Figure 5-10.

Chapter 5 addIng game graphICs

100

Figure 5-10. Drag and drop the image of a platform into the FileSystem dock

Select the Sprite node in the Scene dock, and then drag and drop

the image of the platform (platform-long.png in this case) from

the FileSystem dock onto the Texture field of the Sprite node

(under the Inspector dock), as shown in Figure 5-11.

Chapter 5 addIng game graphICs

101

Figure 5-11. Assigning an image to the Texture field of the sprite

 8. Now that we have our platform, let’s assign a collision shape to it.

Select the CollisionShape2D node under the Scene dock, and then

head over to the inspector. Under the Shape drop-down menu,

select New RectangleShape2D to add a rectangular collision

shape, as shown in Figure 5-12. Now, you’ll notice that the

warning sign next to CollsionShape2D disappears.

Figure 5-12. Adding a RectangleShape2D

Chapter 5 addIng game graphICs

102

 9. Now, zoom in on the platform by scrolling on your mouse or using

the zoom in button on the workspace. Drag the orange dots to

adjust the collision shape to fit the size and shape of the platform,

as shown in Figure 5-13.

Figure 5-13. Adjusting the size of the collision shape

 10. Let’s group the StaticBody2D node with its children, i.e., the

CollisionShape2D and Sprite nodes so that they move together as

one unit. Under the Scene dock, select StaticBody2D, and then

Click on the bind button next to the lock icon on the 2D toolbar

near the top of the workspace. Once we do that, the icon will

appear next to StaticBody2D, and we can freely move the static

body around in the workspace. This is shown in Figure 5-14.

Figure 5-14. Group the StaticBody2D, CollisionShape2D, and Sprite nodes together

Chapter 5 addIng game graphICs

103

 11. Zoom out and adjust the workspace until you can see the rectangle

formed by the faint pink, green, and purple lines, shown in Figure 5-15.

The space enclosed by this rectangle is what is visible to us when we play

the game scene. Let’s call this the game screen area. Since the static body

represents the ground in our game, click and drag it toward the bottom of

the game screen area in the workspace, as shown in Figure 5-15.

Figure 5-15. Zoom out until you see the game screen area and then move the
platform to the bottom of it

 12. As you can see in Figure 5-15, the platform is tiny compared to

the game scene area! Let’s make it bigger by changing its scale.

Select the StaticBody2D node in the Scene dock; then, under the

Transform field in the Inspector, change its x and y scale values in

the Inspector. As shown in Figure 5-16, we’ve set the x scale to 5

and the y scale to 4. Increasing the x scale makes the static body

longer, while increasing the y scale makes it taller. Do note that

non-uniform scaling can lead to stretched game art!

Chapter 5 addIng game graphICs

104

Figure 5-16. Making the static body larger by increasing its x and y scale

 13. Make sure to adjust the position of the platform to be within the

boundary of the game screen area. If any part of the platform goes

out of the boundary, that part will get cut off and won’t be visible

when we play the game scene. See Figure 5-17.

Figure 5-17. (a) The portion of the platform on the left of the green line gets cut off,
(b) The platform doesn’t get cut off

 14. Now, let’s create a long line of platforms for our character to walk

on. Select StaticBody2D in the Scene dock and press Ctrl+D on

your keyboard to duplicate the node. Alternatively, you can right-

click StaticBody2D and select the “duplicate” option. Once you do

that, an identical node called StaticBody2D2 is created under the

Scene dock. But the static body of this node gets placed on top of

our first static body in the workspace, as shown in Figure 5-18.

Chapter 5 addIng game graphICs

105

Figure 5-18. The duplicated static body gets placed on top of the first static body

Note a better practice for creating multiple copies of an object would be to
create a separate scene for the object and then to create multiple instances of that
object in our main game scene. We’ll take a look at creating instances of scenes in
the next section.

 15. Click it, and then drag it away from the first static body by holding

down your left mouse button and moving your mouse. Place it

next to the first static body, as shown in Figure 5-19, for creating a

longer platform. You can choose to enable Smart Snap (Shift+S) by

clicking the icon and Grid Snap (Shift+G) by clicking the

icon on the 2D toolbar to make it easier for you to place the

platforms. You can configure snapping by clicking the Snapping

options icon on the toolbar.

Chapter 5 addIng game graphICs

106

Figure 5-19. The second static body is moved and placed next to the first static
body to create a longer platform

 16. We can repeat the previous step a number of times to create a line

of platforms that forms the ground for our character to move on,

as shown in Figure 5-20.

Figure 5-20. A long line of platforms forming the ground of the game

Chapter 5 addIng game graphICs

107

 17. We’ve created the first scene of our game! Let’s rename the scene

Game Level by double-clicking the root node, Node2D in the

Scene dock, and then typing in the new name. Save the scene

by clicking Scene ➤ Save Scene As at the top-left corner of the

interface (keyboard shortcut: Ctrl+Shift+S). By default, Godot

names the scene Game Level.tscn, since this is the current name

of our root node. Replace this with GameLevel.tscn, as shown in

Figure 5-21. Then click Save.

Figure 5-21. Save the scene as GameLevel.tscn

 18. Play the scene by clicking the Play Scene button (keyboard

shortcut: F6) on the Playtest tab on the top-right corner of the

interface. You’ll see the debug window pop up, as shown in

Figure 5-22.

Chapter 5 addIng game graphICs

108

Figure 5-22. Play the game scene

 Creating the Player
Follow these steps:

 1. Create another scene by clicking the button next to our first

scene, GameLevel, as shown in Figure 5-23.

Figure 5-23. Creating a new game scene

 2. Now, we’ll create a game object for our character. Since we’ll be creating

this object as a scene, we don’t need to add a root node. Instead, in the

empty Scene dock of this new scene, click the Add Child Node button

Chapter 5 addIng game graphICs

109

and add a node called KinematicBody2D by searching for it in the

window that pops up. This is shown in Figure 5-24.

Figure 5-24. Creating a KinematicBody2D node

 3. Just like in the case of any physics body, we also need to add

CollisionShape2D and Sprite nodes as its children. We can do that

by selecting KinematicBody2D in the Scene dock, clicking the

Add Child Node button, and then searching for and creating the

respective child nodes.

 4. Import the sprite (image) for the player from your computer by dragging

and dropping it into the FileSystem dock from the file on your computer.

Re-import the image by selecting it in the FileSystem dock, then

unselecting the Filter property (untick it) in the Import dock (Next to

Scene dock), and clicking on the Reimport button.

Chapter 5 addIng game graphICs

110

 5. Select the Sprite node in the Scene dock, and then drag and drop

the image of the Player from the FileSystem dock into the Texture

field of the Sprite node (in the Inspector dock).

 6. Zoom in on the Player on the workspace by scrolling with your

mouse or using the zoom in button on the workspace.

 7. We need to assign a collision shape to our player. Select the

CollsionShape2D node in the Scene dock, and then head over

to its shape field in the Inspector dock. This time, let’s select a

capsule shape. Adjust the capsule shape to fit the sprite’s shape

and size by dragging the orange dots on the workspace. You can

adjust the x and y positions under the Transform field in the

inspector for moving the capsule shape up/down or left/right, as

shown in Figure 5-25.

Figure 5-25. Adjusting the size and shape of the CapsuleShape2D

 8. Select KinematicBody2D in the Scene dock; then click the

button to bind it with its child nodes, i.e., CollisionShape2D and

Sprite. Now, you can freely move the player around in the

workspace in the current scene.

Chapter 5 addIng game graphICs

111

 9. Save the scene by clicking Scene ➤ Save Scene As at the top-left

corner of the interface (keyboard shortcut: Ctrl+Shift+S). Rename

the scene to Player.tscn.

 10. Move the player on the workspace so that it is within the

boundaries of the game screen area (rectangle formed by the

green, pink, and purple lines on the workspace).

 11. But the player is too small compared to the game screen area!

Let’s increase its size by selecting the Sprite node in the Scene

dock and then changing its x and y scale on the Inspector dock.

Let’s make the x and y value equal to, say, 4. Do the same for the

CollisionShape2D, and make the x and y values equal to, say, 3.

You can also change the x and y scale of the KinematicBody

instead, as shown in Figure 5-26.

Figure 5-26. The player’s size is increased by changing the x and y scale of its
KinematicBody2D

 12. Now when you play the scene by pressing Play Scene button

(keyboard shortcut F6), you can see that the player’s size is bigger.

Make sure to save the scene.

TRY IT!

Creating Your First Game Character

 1. Create a game character with the sprite (image) of your choice.

 2. Increase the size of the character to five times its original size.

Chapter 5 addIng game graphICs

112

 Linking the Player to the Main Scene
Follow these steps:

 1. Go to the Game Level scene (the first scene that we created), and

then select the root node, Game Level.

 2. Next, click the icon (next to the Add Child node icon) on the

Scene dock for creating an instance of our player scene in the

Game Level scene.

 3. You can now select the scene to be instanced. Select the

Player.tscn scene, and click Open, as shown in Figure 5-27.

Our player game object appears in this scene. Next, move the

player toward the bottom of the workspace so that it’s standing

on the platform.

Figure 5-27. Select Player.tscn to create an instance of it in GameLevel.tscn

 4. Click the play scene button to see the player standing on the

ground! We can see this in Figure 5-28.

Chapter 5 addIng game graphICs

113

Figure 5-28. Our player now appears in the Game Level scene

 Moving the Player Using Keyboard Input
We finally have a scene with our player in it! But when you play the game scene, it

doesn’t move no matter what keyboard key you press. We need to write a simple script

for controlling our player. Let’s take a look at how to do this.

 1. Go to the scene in which you created the player (in our case,

Player.tscn). Select KinematicBody2D (the node that represents

our player) in the Scene dock; then click the icon to attach a

script to it. This is shown in Figure 5-29.

Chapter 5 addIng game graphICs

114

Figure 5-29. Attaching a new script to KinematicBody2D

 2. The Attach Node Script window pops up, as shown in Figure 5-30.

We can select different properties of the script such as its name, the

language (we’ll be using GDScript), the node that it is attached to, and the

path it’s saved under. By default, the script is named after the scene name.

As shown in Figure 5-30, since our scene name is Player, the default script

name shows up as Player.gd, under the path res://Player.gd.

Figure 5-30. Attaching a node script

Chapter 5 addIng game graphICs

115

 3. Once you click Create, Godot’s scripting IDE opens up. As shown

in Figure 5-31, the script has a default function called _ready(),

and a few lines of comments (starting with #). You can go ahead

and delete all the lines in this script, as we’ll replace them with our

own lines of code.

Figure 5-31. The Godot scripting IDE

Note the script, Player.gd, is saved under res:// in the Filesystem dock.

 4. Type in the following code in the Scripting space:

extends KinematicBody2D

var velocity = Vector2(0,0)

func _physics_process(delta):

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -200

Chapter 5 addIng game graphICs

116

 if Input.is_action_pressed("right_arrow"):

 velocity.x = 200

 move_and_slide(velocity)

 velocity.x = lerp(velocity.x,0,0.1)

• We declare a variable called velocity and use the data type called

Vector2 (x,y) to define the initial velocity of our kinematic body

(player) in the x and y directions. Vector2 (0,0) implies that the x,

as well as y velocities, are both 0.

• The function _physics_process (delta) checks if either the left or

right keyboard key is pressed and increases the velocity in the left or

right direction, respectively.

• If the left arrow key is pressed, the kinematic body moves left (its

horizontal velocity is set to -200). Similarly, if the right arrow key is

pressed, the body moves right (its horizontal velocity is set to 200).

NOTE: You can replace -200 and 200 with other values for changing

the velocity by different amounts.

• move_and_slide() is a Godot function that moves a body along a

specific vector. Since we’re passing the parameter velocity to it, and

velocity is defined as a two-dimensional vector, move_and_slide()

moves the kinematic body in the x and y directions.

• lerp() is another Godot function that we use for smoothly bringing

the player to a stop when you let go of the arrow keys. If we don’t

include this last line in the code, the player will keep moving in

one direction! The player velocity in the x-direction (velocity.x)

transitions to 0 from either -200 or 200 (depending on which key

was pressed) by 0.1 or 10 percent, 60 times per second. Using lerp()

causes an exponential falloff of the velocity, with the velocity being

dependent on the fixed physics frame rate.

Make sure to use proper indentation while writing the script, as shown in

Figure 5-32.

Chapter 5 addIng game graphICs

117

Figure 5-32. The script for moving the character using the arrow keys

 Assigning Keyboard Input
Before playing the scene to see the script working, we need to tell Godot that left_arrow

and right_arrow represent the left and right keyboard keys. We do this by defining this

in the input map.

 1. On the Project tab in the top-left corner of the interface, click

Project Settings, and then open the Input Map tab on the window

that pops up. This is shown in Figures 5-33 and 5-34.

Figure 5-33. Opening the Project Settings

Chapter 5 addIng game graphICs

118

Figure 5-34. The Input Map tab in the Project Settings window

 2. In the Action field, type in left_arrow, and then click the Add

button, as shown in Figure 5-35.

Figure 5-35. Adding a new action called left_arrow

 3. Our newly added action, left_arrow, gets added to the bottom of

the list of actions. Click the button next to it and select the

option that says Key, as shown in Figure 5-36. We use the Key

option for assigning a keyboard key.

Chapter 5 addIng game graphICs

119

Figure 5-36. Select the Key option for assigning a keyboard key

Note You can also assign other options such as Joy Button, Joy axis, or mouse
Button, in case you’re using other input devices such as a handheld controller
or mouse.

 4. Next, you’ll be prompted to press the corresponding arrow key on

your keyboard, as shown in Figure 5-37. Press the left keyboard

arrow key, and click OK.

Figure 5-37. (a) Prompt to press a keyboard key, (b) confirming that the left
arrow key was pressed

 5. You can repeat this for assigning multiple buttons for our left_

arrow action. For example, we can also add the A keyboard key for

moving left.

 6. In this way, the left arrow key and A key on the keyboard are

assigned to left_arrow, as shown in Figure 5-38.

Figure 5-38. The left arrow key and the A key are assigned to the left_arrow
action name

Chapter 5 addIng game graphICs

120

 7. To assign the right arrow key on the keyboard to the right_arrow

action, repeat steps 2 to 6. In the Action field at the top of the

Input Map tab, type in right_arrow and click Add. Once it appears

at the bottom of the list of actions, click the button next to

right_arrow, and then select the Key button. Once prompted,

press the right arrow key on your keyboard to confirm assigning

this key to right_arrow. Let’s repeat this for assigning the D key on

the keyboard to right_arrow as well. We should then see the

assignment, as shown in Figure 5-39.

Figure 5-39. The right arrow key and the D key are assigned to the right_arrow
action name

 8. Click Close to exit the Project Settings. Now, save the scene

(Ctrl+S), and then press the play button (F5) to play the game

project. Since we haven’t yet defined the main scene for our game,

a dialog window will pop up asking us to select one. In this

window, click the Select button, and choose GameLevel.tscn in

the Pick a Main Scene window prompt. Then, click the Open

button to set it as the main scene of the project.

 9. Now, once the main game scene starts playing, you can press the

left arrow or A keyboard key to move the player left, and press the

right arrow or D keyboard key to move it to the right. Figure 5-40

shows the player moving toward the right after we press either the

right arrow key or the D keyboard key.

Chapter 5 addIng game graphICs

121

Figure 5-40. The player moves toward the right after pressing the right arrow key
or the D keyboard key

Note You can also click the play scene (F6) button for playing a scene, but
this will only play the current scene you’re in.

TRY IT!

Writing a Script for Moving the Player

 1. Write a script for moving the player left or right on the game screen with

corresponding key presses on the keyboard.

 2. add different keyboard key assignments to the input map for doing this.

 3. Change the value of velocity.x by different values, and then play the scene

to see how it affects the player.

Chapter 5 addIng game graphICs

122

 Adding a Background Image
To add a background image to your main game scene (GameLevel.tscn), follow

these steps:

 1. Go to the main game scene (GameLevel.tscn).

 2. Import the image that you want to use as the background into

your project by dragging and dropping it into the FileSystem dock.

Reimport it by selecting it in the FileSystem dock, then unselecting

the Filter property in the Import dock, and clicking Reimport.

 3. Select the root node, that is, Game Level, and click the button

to add a child node. Search for TextureRect (or navigate to it at this

path: Node ➤ CanvasItem ➤ Control ➤ TextureRect), and click

the Create button.

 4. Select TextureRect in the Scene dock, and then drag and drop

the image of the background from the FileSystem dock onto the

Texture field of TextureRect in the Inspector dock, as shown in

Figure 5-41.

Figure 5-41. Drag and drop the background image onto the Texture field of
TextureRect

Chapter 5 addIng game graphICs

123

 5. As shown in Figure 5-41, select the Expand option. This will make

sure that the background image scales properly when we try to

expand it.

 6. Drag the orange dots on the edges of the background image on the

workspace to increase its size until it fills the entire game screen

area, as shown in Figure 5-42. In cases where you want to ensure

uniform scaling, you can hold down the Shift key while expanding

the image.

Figure 5-42. Expanding the background image to fill the game screen area

 7. But now, the background image is covering all the static bodies in

our scene! Let’s send it to the back by selecting TextureRect in the

Scene dock and selecting the Show Behind Parent option under

Visibility in the Inspector dock. This is shown in Figure 5-43.

Chapter 5 addIng game graphICs

124

Figure 5-43. Selecting the Show Behind Parent option in the Inspector, for the
TextureRect node

 8. Play the game scene by pressing the playtest Play Scene (F6)

button! You’ll see that the game scene now has the newly added

background, as shown in Figure 5-44.

Chapter 5 addIng game graphICs

125

Figure 5-44. The final game scene with the newly added background

 Key Takeaways
In this chapter, we learned about game assets and how to choose the right ones for our

game based on the theme. We were introduced to a few online sources that we could

use for obtaining our game assets and learned how to import game art into our Godot

project. We created a scene with simple environmental props such as the ground and sky

and also created our game character. We learned how to create an instance of our player

in another scene. Using this knowledge, we wrote a simple script to make a playable

scene in which the player moved on the ground when certain keyboard keys were

pressed.

Chapter 5 addIng game graphICs

127
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_6

CHAPTER 6

Game Animations

 In this chapter, we’ll learn how to create player animations for performing
different actions such as running, jumping, and staying idle. We will use the game
assets obtained in the previous chapter for creating animated image frames. We
will also learn how to write a player script for making the animations work when
certain keyboard keys are pressed.

 Giving Life to the Player
In the previous chapter, we created our first character using the game assets that we

downloaded. We also made it move left and right by pressing various keyboard keys.

Now, let’s learn how to create various player actions that are involved in making a

platformer, such as running, jumping, or staying idle.

 Importing Images for Animation
First, let’s import all the images we need for animating our main character, the player. We

saw how to do this in the previous chapter—a simple drag and drop from the computer

system into the FileSystem dock, as shown in Figure 6-1.

https://doi.org/10.1007/978-1-4842-7455-2_6#DOI

128

Figure 6-1. Drag and drop the player animation sprites into the project

As shown in Figure 6-1, we have downloaded the sprites for different player actions

such as climbing, crouching, getting hurt, being idle, and jumping. Each folder consists

of a set of images that, when played one after another animation, would result in that

action. For example, as shown in Figure 6-2, the run sprite folder has six different

images that can be used to create the running animation. Make sure to name the

images according to the order in which they should be played during the animation,

for example, player-run-1, player-run-2, player-run-3, etc. You can download the

asset pack that provides the images shown in Figure 6-1 here: https://ansimuz.itch.

io/sunny- land- pixel- game- art. This pack, called SunnyLand, has been designed by

Ansimuz.

Chapter 6 Game anImatIons

https://ansimuz.itch.io/sunny-land-pixel-game-art
https://ansimuz.itch.io/sunny-land-pixel-game-art

129

Figure 6-2. Individual images for the running animation

Now, let’s organize the images in our FileSystem into different folders. To create

a new folder, right-click res://, and then select the New Folder option, as shown in

Figure 6-3 (a). Give this folder a suitable name, e.g., player_animation, and then click

the OK button. This is shown in Figure 6-3 (b).

Chapter 6 Game anImatIons

130

Figure 6-3. (a) Creating a new folder, (b) naming the new folder

Next, select all the animation image folders in the FileSystem dock and right-click

and select the Move To option, as shown in Figure 6-4 (a). In the Choose a Directory

window that pops up, choose the folder we want to move all the image folders to, e.g., the

player_animation folder, as shown in Figure 6-4 (b), and then click the Move button.

Chapter 6 Game anImatIons

131

Figure 6-4. (a) Selecting the image folders to be moved, (b) selecting the player
animation folder

We can see the updated hierarchy in Figure 6-5.

Figure 6-5. New hierarchy after moving the image folders

Chapter 6 Game anImatIons

132

Now, sometimes when you import images into Godot, especially Pixel Art, they

might appear blurry in the 2D workspace, if they are being filtered by the engine. Let’s

make sure that all of our imported images are crisp and clear.

 1. First, select all the images in the FileSystem dock, as shown in

Figure 6-6 (a), by holding down the Ctrl button on your keyboard

and clicking the images one by one.

Figure 6-6. (a) Select all the images in the FileSystem dock, (b) uncheck the Filter
option on the Import tab in the Scene dock

Chapter 6 Game anImatIons

133

 2. Then, head over to the Import tab under the Scene dock, and make

sure that the Filter field is unchecked, as shown in Figure 6-6 (b). If

it is selected, then uncheck it and click the Reimport button. This

will sharpen all the images that we import into our Godot project.

We can now start creating our player animations!

 Animating the Player
Follow these steps:

 1. First, open the player scene (Player.tscn) that we created

in our previous chapter. The Scene dock should have three

nodes—the KinematicBody2D (parent node) and its child nodes,

CollisionShape2D, and the Sprite node.

 2. Now, for animating our kinematic body, i.e., our player, we need to

replace this Sprite node with an AnimatedSprite node. To do this,

we can right-click the Sprite node in the Scene dock and select

the Change Type option, as shown in Figure 6-7, then search and

choose the AnimatedSprite node. Another option is to delete the

original Sprite node and create a new node called AnimatedSprite.

Chapter 6 Game anImatIons

134

Figure 6-7. Changing the type of the Sprite node

 3. Let’s go ahead and delete the existing Sprite node by right-clicking

it in the Scene dock and selecting the Delete Node option.

 4. Now, our Scene dock will only have KinematicBody2D as the

parent node, and CollisionShape2D as its only child. Select

KinematicBody2D, and click the button to create another

child node.

Chapter 6 Game anImatIons

135

 5. In the Create New Node window, search for AnimatedSprite,

then select the AnimatedSprite node and click the Create button,

as shown in Figure 6-8. You can also navigate to this node using

this path:

Figure 6-8. Creating an AnimatedSprite node

Node ➤ CanvasItem ➤ Node2D ➤ AnimatedSprite

 6. You need to assign the frames that make up the animation to the

Frames property of the new AnimatedSprite node. As shown in

Figure 6-9, when we select the AnimatedSprite node in the Scene

dock, the Frames field in its Inspector dock shows “[empty].”

Chapter 6 Game anImatIons

136

Figure 6-9. We need to assign images to the Frames field of the AnimatedSprite

 7. Click the small arrow on the Frames field in the Inspector dock

to open the drop-down menu, and select the New SpriteFrames

option, as shown in Figure 6-10.

Chapter 6 Game anImatIons

137

Figure 6-10. Select the New SpriteFrames option

 8. Once you do that, appears in the Frames field. Click

it to open the SpriteFrames editor, as shown in Figure 6-11.

Figure 6-11. The SpriteFrames editor

Chapter 6 Game anImatIons

138

 Creating Animations with Individual Images
For each player action to be animated, we have to add its name to the Animations list,

and we have to add the corresponding images to the area under Animation Frames. Let’s

do this for different player actions.

 Idle Animation
Follow these steps:

 1. In the SpriteFrames editor shown in Figure 6-11, click default and

replace it with the word idle.

 2. Next, drag and drop the individual images that represent the idle

action from the FileSystem dock, onto the Animation Frames area,

as shown in Figure 6-12.

Figure 6-12. Creating the idle animation

Chapter 6 Game anImatIons

139

 3. If you want to see the animation play, select the Playing option

in the inspector window. When you do this, the frames are

continuously cycled in the order in which they appear in the

Animation Frames area, forming an animated image in the

workspace area.

Now, for this animation to work, we need to add the following line of code to our

player script:

$AnimatedSprite.play("idle")

Open the player script (Player.gd) we created in the previous chapter, and add this

line of code in the _physics_process(delta) function. Add it within an else statement,

right after the two if statements that check whether either the left or right keyboard key

is pressed, as shown here:

func _physics_process(_delta):

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -200

 if Input.is_action_pressed("right_arrow"):

 velocity.x = 200

 else:

 $AnimatedSprite.play("idle")

Now, change the second if to an elif, as shown here:

func _physics_process(_delta):

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -200

 elif Input.is_action_pressed("right_arrow"):

 velocity.x = 200

 else:

 $AnimatedSprite.play("idle")

This ensures that the idle animation is played only when none of the keyboard keys

assigned to the “left arrow” or “right arrow” is pressed. Here, play() is a Godot function

that plays the animation specified within the brackets. Since we want to play the idle

action animation, we specify idle within the brackets.

Chapter 6 Game anImatIons

140

The code inside the Player.gd script should look similar to the following snippet:

extends KinematicBody2D

var velocity = Vector2(0,0)

func _physics_process(_delta):

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -200

 elif Input.is_action_pressed("right_arrow"):

 velocity.x = 200

 else:

 $AnimatedSprite.play("idle")

 move_and_slide(velocity)

 velocity.x = lerp(velocity.x,0,0.1)

Note the player velocity in the x direction (left/right) is velocity.x, while
the player velocity in the y direction (up/down) is velocity.y. You can
assign different values to these variables to change the player’s speed in the
corresponding direction. take note that negative values indicate the left or up
directions, while positive values indicate the right or down directions.

Make sure to follow proper indentation when writing the code, as shown in Figure 6-13.

Figure 6-13. The script for the idle animation

Chapter 6 Game anImatIons

141

Next, save your script using Ctrl+S or navigating to the Save button using the toolbar

on the top left of the engine. Then click the Play button (F5) to play the project (the

 Play Scene button (F6) plays the current scene). The debug window opens, and we

see the idle animation playing, as shown in Figure 6-14. But this animation continues to

play even when we press the left or right keyboard arrow keys (along with the A and D

keys if you’ve set them in the input map)! Let’s change that by creating a run animation.

Figure 6-14. The idle player animation plays in the debug window

 Run Animation
Follow these steps:

 1. Open the player scene, Player.tscn, and click the AnimatedSprite

node in the Scene dock. Since this is an animated sprite, the

SpriteFrames editor should then open up at the bottom panel of

the interface.

Chapter 6 Game anImatIons

142

 2. In the SpriteFrames editor, click the New Animation icon (next

to the trash can icon) to create a new animation, and replace the

default name, New Anim, with run. This is shown in Figure 6-15.

Figure 6-15. Creating a new animation in the SpriteFrames editor

 3. Just as we did for the idle animation, drag and drop the player run

images from the FileSystem dock, into the Animation Frames area,

as shown in Figure 6-16.

Figure 6-16. Drag and drop the player run images into the Animation
Frames editor

Chapter 6 Game anImatIons

143

 4. If you click the box next to the Playing field in the Inspector dock

for the AnimatedSprite, you’ll see the player in the workspace

“running,” that is, playing all the image frames in order.

 5. Now, open the player script Player.gd, and add

$AnimatedSprite.play("run") in the player script, as

shown here:

extends KinematicBody2D

var velocity = Vector2(0,0)

func _physics_process(_delta):

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -200

 $AnimatedSprite.play("run")

 elif Input.is_action_pressed("right_arrow"):

 velocity.x = 200

 $AnimatedSprite.play("run")

 else:

 $AnimatedSprite.play("idle")

 move_and_slide(velocity)

 velocity.x = lerp(velocity.x,0,0.1)

Make sure to use proper indentation when writing the code, as shown in Figure 6-17.

 6. Save the script, and then play the project using the Play button

(F5). Once the debug window opens, you can see that the run

animation plays when you press the left or right arrow keys

(and A or D keys if you’ve set them in the input map), and the

idle animation plays when you don’t press any key.

Chapter 6 Game anImatIons

144

Figure 6-17. Script for player run animation

But one issue still exists—when you press the left arrow, the player seems to run

backward, instead of turning around and running in the left direction! We can fix this by

modifying the code as follows:

extends KinematicBody2D

var velocity = Vector2(0,0)

func _physics_process(_delta):

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -200

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = true

 elif Input.is_action_pressed("right_arrow"):

 velocity.x = 200

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = false

 else:

 $AnimatedSprite.play("idle")

 move_and_slide(velocity)

 velocity.x = lerp(velocity.x,0,0.1)

Chapter 6 Game anImatIons

145

Here, flip_h is a property of an animated sprite that flips the texture, i.e., image

assigned to it, horizontally. Setting it true creates a mirror image of the player’s animated

sprite, while setting it false keeps the original image. We set the property to true when the

player runs left, as shown in Figure 6-18 (a), and set it to false when the player runs right,

as shown in Figure 6-18 (b).

Figure 6-18. (a) Player running left, (b) player running right

Make sure that your properly indented code looks like Figure 6-19.

Figure 6-19. Player script with flip_h property added

Chapter 6 Game anImatIons

146

 Jump Animation
Follow these steps:

 1. Open the player scene, Player.tscn, and click the AnimatedSprite

node in the Scene dock.

 2. In the SpriteFrames editor, click the button to create a new

animation, and replace the default name, New Anim, with jump.

This is shown in Figure 6-20.

Figure 6-20. Creating a new animation for Jump

 3. Next, drag and drop the images for the jump animation from the

FileSystem dock into the Animation Frames area, as shown in Figure 6-21.

Figure 6-21. Dragging and dropping the Jump Animation images into the
SpriteFrames editor

Chapter 6 Game anImatIons

147

In the previous chapter, we set the project input map to detect the left arrow, right

arrow, and the A and D keyboard keys for controlling our player. We need to set a

keyboard key for the player’s jump action in the same way.

 1. Open Project Settings by clicking the Project button in the menu

at the top-left corner of the interface and selecting the Project

Settings option.

 2. Open the Input Map tab, and type in jump in the Action field, as

shown in Figure 6-22, and click the Add button.

Figure 6-22. Adding the Jump action in the input map

 3. The “jump” action gets added to the bottom of the list of actions,

as shown in Figure 6-23. Next, click the button next to jump,

and select the Key option, shown in Figure 6-24, for assigning the

corresponding keyboard keys to it.

Figure 6-23. The jump action is added to the list in the Input Map

Chapter 6 Game anImatIons

148

Figure 6-24. Select the Key option for assigning a keyboard key to the jump action

 4. A window will pop up, prompting you to press the keyboard

key you want to assign to jump. Press the spacebar key on your

keyboard to assign it to jump, and click the OK button to confirm

the key press.

 5. Just as we did in the previous chapter, we can assign multiple

keys to any action. For example, we can assign the up arrow key,

as well as the W key on the keyboard for jumping, by clicking the

Key option and entering the corresponding key. This is shown in

Figure 6-25.

Figure 6-25. Assigning the spacebar, Up arrow, and W keyboard keys to the
Jump action

 6. Close the Project Settings.

 7. Open the player script (Player.gd), and modify it as follows:

extends KinematicBody2D

var velocity = Vector2(0,0)

var gravity = 2000

func _physics_process(_delta):

 if Input.is_action_just_pressed("jump")and is_on_floor():

 velocity.y= -1000

 $AnimatedSprite.play("jump")

Chapter 6 Game anImatIons

149

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -300

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = true

 elif Input.is_action_pressed("right_arrow"):

 velocity.x = 300

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = false

 else:

 $AnimatedSprite.play("idle")

 if not is_on_floor():

 $AnimatedSprite.play("jump")

 velocity.y = velocity.y + gravity * (_delta)

 move_and_slide(velocity, Vector2.UP)

 velocity.x = lerp(velocity.x,0,0.1)

• is_action_just_pressed() is a Godot function that returns true

only at that instant (or frame) when the keyboard key is pressed.

We use this, since we want to just press and release a keyboard key

to cause the player to jump, and we don’t want to hold down the

keyboard key for this purpose.

• When any of the keyboard keys assigned to the jump action is

pressed, and when the player is on the floor (platform), the velocity

of the player is set to -1000, in the negative y direction (upward).

We can choose any value to assign to our y velocity. The height

the player jumps to will depend on this value. For example, setting

velocity.y to -2000 will make the player jump higher than if we set it

to velocity.y to -1000.

• is_on_floor() is a Godot function that detects whether the physics

body, i.e., the player, is on the floor. We add this to the first if

statement to make sure that the Jump action works only when the

player is on the platform, and not when the player is in the air.

Chapter 6 Game anImatIons

150

• move_and_slide() can take many arguments, out of which the first

one is the linear velocity, and the second one is the up direction

vector. We use Vector2.UP, where UP is a constant that represents

Vector2(0, -1) (where x=0, y=-1), and we include this in the

move_and_slide() function to enable the player to move in the –y

direction. This up direction parameter allows us to determine what

counts as a wall and what counts as a floor, enabling the is_on_

floor() check to work properly. In a similar way, DOWN represents

Vector2(0,1), LEFT represents Vector2(-1,0), and RIGHT

represents Vector2(1,0).

• We declare a variable called gravity, and assign it a value, e.g.,

2000. This will be the downward force acting on our player. The line

velocity.y = velocity.y + gravity *(_delta) cumulatively adds

the gravity to the y velocity. In this case, we’ve set the y velocity to be

negative (causing the body to move upward). When we add gravity to

it, it pulls the body down toward the ground, over time. Multiplying

the gravity value with _delta ensures that the game’s behavior stays

consistent even if the FPS changes.

• We add an if statement (if not is_on_floor()) to cover the case

in which the player is midair, either during a fall or during a jump.

If the player is not on the floor, i.e., the platform, we assume that it’s

airborne. In this case, we play the jump animation frames that we

created previously. Since this condition is independent of the other

if-else conditions, we use an if statement, instead of an elif.

• velocity.x can be changed to 300 (right direction) and -300 (left

direction) to make the player move faster (compared to if the values

of velocity.x are equal to 200 and -200 in the right and left directions

respectively). You can change these values to change the player’s

horizontal velocity.

Note In Godot, negative values of x and y indicate the left and up direction
respectively, while positive values of x and y indicate the right and down directions,
respectively.

Chapter 6 Game anImatIons

151

Figure 6-26 shows the final script for the player jump, run, and idle actions.

Figure 6-26. Final script for run, jump, and idle actions

TRY IT!

Creating Player Animations

 1. Create animations for jumping, running, and idle actions, and assign player

sprites to them in the spriteFrames editor.

 2. Write and run the script shown in Figure 6-26, for different values of gravity,

velocity.x, and velocity.y.

Chapter 6 Game anImatIons

152

 Other Player Actions
In the previous part of this chapter, we created player animations for jumping, running,

and staying idle. We can do the same for other actions as well, such climbing or

crouching, or when the player gets hurt. Just as we did before, we have to create a new

animation in the SpriteFrames editor and drag and drop the corresponding images into

it. As shown in Figure 6-27, animation actions called climb, crouch, and hurt have been

created. In the figure, the image frames for the player climb action have been copied from

the FileSystem dock into the Animation Frames editor, through drag and drop. The same

can be done for the rest of the actions. If you’re using individual images to animate the

Player, instead of using a Sprite Sheet, you can skip the next few sections in this chapter.

Figure 6-27. Creating the climbing animation

 Creating Animations Using a Sprite Sheet
Sometimes, we might have a Sprite Sheet that contains all the image frames on it, instead

of individual player images. Figure 6-28 shows an example of a Sprite Sheet. This Sprite

Sheet can be found in the same asset pack that we used previously, designed by Ansimuz

(https://ansimuz.itch.io/sunny- land- pixel- game- art).

Figure 6-28. A Sprite Sheet with running sprites

Chapter 6 Game anImatIons

https://ansimuz.itch.io/sunny-land-pixel-game-art

153

We can break, i.e., splice, the Sprite Sheet into its individual image frames using

an online Sprite Sheet splicer and then use the procedure discussed in the previous

sections for animation. Another option is to use Godot’s built-in animation player for

animating it.

For simpler animations, we can use the SpriteFrames editor for an AnimatedSprite.

In the SpriteFrames panel under Animation Frames, you can click the Add Frames

from a Sprite Sheet icon to add frames from a Sprite Sheet. Then, select the Sprite Sheet

you want to use in the Open a File window, and click the Open button. In the Select

Frames window, set the Horizontal and Vertical frames (equal to 6 and 1 respectively in

the example shown in Figure 6-29). Then, click the individual frames (a blue box appears

around each selected frame), and finally click the Add Frames button. The number of

frames that you select will appear on this button, e.g., Add 6 Frame(s) as seen in

Figure 6-29.

Figure 6-29. Selecting the frames in the Sprite Sheet

 Introduction to Godot’s Animation Player
We can use the Scene dock that we created in the previous chapter, with the

KinematicBody2D being the parent node, along with two child nodes: CollisionShape2D

and the Sprite node.

Chapter 6 Game anImatIons

154

Note For animating the player using Godot’s animation player, make sure that
you have a sprite node, not an animatedsprite node in your scene dock as a child
of KinematicBody2D.

 1. Add a node called AnimationPlayer as a child of

KinematicBody2D. We can do this by selecting the

KinematicBody2D node in the Scene dock, clicking the Add Child

Node button, searching for the AnimationPlayer node in the

Create New Node window, and then clicking the Create button.

 2. Next, select the Sprite node in the Scene dock, and assign the

Sprite Sheet you want to animate as its texture by dragging and

dropping the Sprite Sheet from the FileSystem dock onto the

Texture field in the Inspector dock, as shown in Figure 6-30.

Figure 6-30. Assigning a spritesheet as a texture of a sprite

The Sprite Sheet appears on the workspace as a single image, and we need to tell

Godot how to split it into individual images.

Chapter 6 Game anImatIons

155

 3. Expand the Animation tab in the Inspector dock of the Sprite

node, as shown in Figure 6-31. Here, the Vframes determines

the number of rows, and the Hframes determines the number of

columns in the Sprite Sheet for splitting it into individual images.

Figure 6-31. Expanding the Animation tab in the Inspector dock of the
Sprite node

 4. As we are animating the Sprite Sheet given in Figure 6-28 and it

has one row and six columns, set the Vframes to 1, and set the

Hframes to 6.

 5. Godot now successfully splits up the Sprite Sheet into six

individual images and places them on top of each other on the

workspace. As shown in Figure 6-32, one of the frames (Frame

0, in this case) is displayed in the workspace. We can toggle the

frame number by clicking the small arrows next to the Frame field

on the Animation tab.

Chapter 6 Game anImatIons

156

Figure 6-32. The workspace displays one of the six frames at a time

Note If the images in the workspace are blurry, select the sprite sheet in the
Filesystem dock and head over to the import dock next to the scene dock. Untick
the Filter field, and click reimport to get clearer image frames.

 6. Click the AnimationPlayer in the Scene dock, and the Animation

panel opens up at the bottom of the Godot interface, as shown in

Figure 6-33. Click the Animation button, and select the option.

Figure 6-33. The Animation panel

Chapter 6 Game anImatIons

157

 7. Give the animation a name, such as run, and then click the

OK button.

 8. Set the animation interval to 0.6 (next to the clock icon), and

slide the pointer next to the magnifying glass to zoom into the

interval, as shown in Figure 6-34.

Figure 6-34. Set the animation interval to 0.6

 9. Select the Sprite node in the Scene dock, and then head over to

the Inspector dock. Click the key icon next to the Frame field

on the Animation tab to add the first image frame (Frame 0) to the

Animation track. Make sure that Frame is set to 0.

 10. In the window that pops up asking to confirm creation of a new

track, click the Create button. This adds the first frame to the

animation track.

 11. Once the blue pointer in the Animation panel moves to 0.1, toggle

to frame 1 in the Animation tab in the Inspector dock, and click

the key icon again to add this next frame.

 12. Repeat the previous step until all six image frames have been

added to the track, as shown in Figure 6-35.

Chapter 6 Game anImatIons

158

Figure 6-35. Adding all the image frames to the animation track

 13. Click the button for playing the animation in a loop, and then

click the Play button on the Animation Panel . Once you do that,

you can see the running animation playing in the workspace. Save

the project (Ctrl+S).

 14. Now that we have our animation, we have to modify our player

script (Player.gd) to play it using the animation player. Enter the

following code in the scripting space:

extends KinematicBody2D

onready var _animation_player = $AnimationPlayer

onready var _sprite = $Sprite

var velocity = Vector2(0,0)

func _physics_process(_delta):

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -200

 _animation_player.play("run")

 $Sprite.flip_h = true

 elif Input.is_action_pressed("right_arrow"):

 velocity.x = 200

 _animation_player.play("run")

 $Sprite.flip_h = false

 else:

 _animation_player.stop()

Chapter 6 Game anImatIons

159

 move_and_slide(velocity)

 velocity.x = lerp(velocity.x,0,0.1)

• When using the animation player for player animation, we need

to declare

onready var _animation_player = $AnimationPlayer

onready var _sprite = $Sprite

• To play an animation, use _animation_player.play(), and specify

the name of the animation created in the animation panel within the

brackets.

• To stop playing an animation, use _animation_player.stop().

Your properly indented code should look like Figure 6-36.

Figure 6-36. Script for player run animation using AnimationPlayer

Chapter 6 Game anImatIons

160

Click the play button to play the project, and the running animation plays when you

press the keyboard keys to move the Player to the left or right!

TRY IT!

Using Godot’s Animation Player

 1. Use a player action sprite sheet (e.g., run, jump, walk, etc.) and animate the

actions using the animation player.

 2. modify the script for making the animations work.

 3. run the project to see the player animation.

 Key Takeaways
In this chapter, we learned the basics of animating a player using individual image

frames. We created animations for different player actions such as running, jumping,

and staying idle, and we modified our player script to make them work. We also learned

how to split a player action Sprite Sheet into individual images and explored how to use

Godot’s animation player for player animation.

Chapter 6 Game anImatIons

161
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_7

CHAPTER 7

Building the Game World

 In this chapter, we’ll learn how to design a game level for a platformer using a
game asset pack. We’ll learn techniques for splicing a TileMap into its individual
image tiles and placing them into our Godot workspace. We’ll also see how to
configure the game camera to follow the player. Further, we will learn how to
create an infinite-scrolling, parallax background for our game.

Now that we’ve animated our player, let’s dive into the exciting part—building the

game world. In the previous chapter, we saw how we can use individual image frames of

a Sprite Sheet for character animation. For designing a game level, we can use a similar

game asset called a TileMap (or TileSet), which is a single image file that contains objects

and props that you can use for creating the game environment, including the following:

• Trees

• Ground

• Wall

• Rocks

• Doors

• Buildings

Figure 7-1 (a) and Figure 7-1 (b) show TileMaps of environmental props and

platforms. They are part of the game asset pack called Sunny Land (which we used

previously), created by an artist called Ansimuz. We will use it for designing the game

levels for our platformer. You can download it here: https://ansimuz.itch.io/sunny-

land- pixel- game- art.

https://doi.org/10.1007/978-1-4842-7455-2_7#DOI
https://ansimuz.itch.io/sunny-land-pixel-game-art
https://ansimuz.itch.io/sunny-land-pixel-game-art

162

Figure 7-1. (a) A TileMap of environmental objects, (b) a TileMap of platforms
and other props

Since we are now designing the game level from scratch, let’s delete the

StaticBody2D nodes (the platforms) and the TextureRect node (the background) from

our Scene dock. Make sure that you don’t delete the root node Game Level or the

KinematicBody2D node (the player).

To delete a node, right-click it in the Scene dock, and select the option,

as shown in Figure 7-2 (a). You can also click on the node to be deleted in the Scene dock

and press the Delete key on your keyboard.

Figure 7-2. (a) Delete nodes, (b) confirm deletion of the nodes

ChapTer 7 BuIldInG The GaMe World

163

Click the OK button once the Please Confirm window pops up, as shown in

Figure 7-2 (b). Doing so will remove the StaticBody2D node, along with both of its child

nodes, that is, CollisionShape2D and Sprite.

Figure 7-3 (a) and Figure 7-3 (b) show the Scene dock node hierarchy before and

after the deletion of the TextureRect node and all the StaticBody2D nodes.

Figure 7-3. (a) Scene dock before deletion of StaticBody2D and TextureRect nodes,
(b) Scene dock with only the root node and KinematicBody2D node

Note If you accidently delete a node, you can always get it back by pressing
Ctrl+Z on your keyboard.

 Importing the TileMaps
Next, let’s import the TileMaps into our Godot project, by dragging and dropping them

into the FileSystem dock, as shown in Figure 7-4. To make sure that the images are sharp

and not blurry, select them in the FileSystem dock, open the Import tab in the Scene

dock, and make sure to unselect the Filter field. Then, click the Reimport button. This is

shown in Figure 7-5.

ChapTer 7 BuIldInG The GaMe World

164

Figure 7-4. Importing the TileMaps into the project

ChapTer 7 BuIldInG The GaMe World

165

Figure 7-5. Reimporting the images with Filter unselected

ChapTer 7 BuIldInG The GaMe World

166

 Creating Individual Tiles
Let’s see how to use Godot’s TileMap editor to break our TileMap down into its

individual images.

 1. In the main game scene (GameLevel.tscn), select the root node

(Game Level) in the Scene dock, and click the button to add

node TileMap as its child. In the Create New Node window, search

for TileMap, or navigate to it under the following path:

Node ➤ CanvasItem ➤ Node2D ➤ TileMap

Then, click the Create button. This is shown in Figure 7-6.

Figure 7-6. Creating a TileMap node

If you select the TileMap node in the Scene dock, you’ll notice

an orange-colored grid shows up in your workspace, as shown in

Figure 7-7.

ChapTer 7 BuIldInG The GaMe World

167

Figure 7-7. The grid for the TileMap shows up in the workspace

Note The cells/boxes of the grid shown in Figure 7-7 represent the positions
where we will place the image tiles into our game. We will add images from our
TileMap to a panel called the Tile palette. We can then pick and choose images
from the Tile palette and paint them into our workspace.

 2. Now, with the TileMap node selected in the Scene dock, head over

to the Inspector dock. If you expand the tab called Cell, you’ll see

a field called Size, which gives us the length and width of each

cell of the grid in our workspace. By default, it is 64 × 64, and we

can modify it according to the size of the images of our TileMap.

Change the x and y fields both to 16, as shown in Figure 7-8 (a).

ChapTer 7 BuIldInG The GaMe World

168

Figure 7-8. (a) Changing the Cell Size to 16x16, (b) creating a new TileSet
resource

 3. In the Tile Set field, click the small arrow next to “[empty],” and

select New TileSet, as shown in Figure 7-8 (b).

 4. Click on the TileSet icon that now appears in the Tile Set

property field, and the TileSet editor opens up at the bottom panel

of the interface, as shown in Figure 7-9.

Figure 7-9. TileSet editor

ChapTer 7 BuIldInG The GaMe World

169

 5. Click the button on the bottom-left corner of the TileSet editor,

shown in Figure 7-9, and select the TileMaps that we’ve imported

into our project, as shown in Figure 7-10. Click the Open button to

open them in the editor. You can also drag and drop the TileMaps

from the FileSystem dock onto the dark blue area on the left side

of the TileSet editor panel.

Figure 7-10. Opening the TileMaps

Note on your keyboard, press the Shift+F12 keys to expand this editor panel to
take up the whole workspace. You can also click and drag the panel upward to fill
up the workspace.

A preview of the two TileMaps can be seen on the left side of the

TileSet editor, as shown in Figure 7-11. To start editing a particular

TileMap, select its corresponding preview on the left, and it will

open up in the editor on the right.

ChapTer 7 BuIldInG The GaMe World

170

Figure 7-11. TileMaps opened in the TileSet editor

 6. Now, let’s create individual tiles from the TileMaps. Click the

second TileMap (tileset.png) in the TileSet editor, as shown in

Figure 7-12. To zoom into the TileMap, click the Zoom in

button at the top-right corner.

ChapTer 7 BuIldInG The GaMe World

171

Figure 7-12. Opening tileset.png by clicking its preview on the left of the editor

 7. Click the New Single Tile button at the top-right corner

of the editor. This opens the region mode in the editor toolbar, as

shown in Figure 7-13 (a).

ChapTer 7 BuIldInG The GaMe World

172

Figure 7-13. (a) Creating a new tile, (b) toggling the purple grid

 8. Click the grid icon to show the purple grid on the editor space,

as shown in Figure 7-13 (b).

 9. Now, we can select the tile of the image that we want to add to our

Tile palette. First, let’s add an image tile that has the same size as

the grid cell. Click the image in the top-left corner in the editor, as

shown in Figure 7-14. This is one of the images that we will use to

create the ground of our game.

Make sure that the x and y Step size (under the Snap Options

property in the Inspector dock) is 16. This is seen in Figure 7-14.

Recall that we had set the grid size of our workspace to 16x16 as

well, during Step 2.

ChapTer 7 BuIldInG The GaMe World

173

Figure 7-14. Selecting the first image tile

 10. Now, click the Collision button to add a collision shape

to the tile. This opens a toolbar with options to create a new

rectangular or polygon-shaped collision area, as shown in

Figure 7-15.

Figure 7-15. The Collision Shape toolbar

 11. Click the square icon in the toolbar, and then click the image

tile for adding a square/rectangular collision shape to it, as shown

in Figure 7-16. That’s it! This tile gets automatically added to the

Tile palette.

ChapTer 7 BuIldInG The GaMe World

174

Figure 7-16. Adding a rectangular collision shape to the image tile

 12. Now, let’s add an image tile to the Tile palette that is larger than

the purple grid cell size or is irregular in shape. Click the New

Single Tile button on the top right of the editor. With the region

button (next to the Collision button) selected, click and drag your

cursor across the image so that the yellow square completely

surrounds the entire image, as shown in Figure 7-17.

Figure 7-17. Drawing the square around the tile

ChapTer 7 BuIldInG The GaMe World

175

Note once you add a tile to the Tile palette, it stays bordered by a yellow square,
as shown in Figure 7-17, even while you’ve selected another tile.

 13. Now, we need to add a collision shape to it, just as we did before.

Click the Collision button to open up the Collision Shape

toolbar. This time, since our image is not square-shaped, we will

manually draw an exact, triangular collision shape around it.

Select the Polygon-shaped icon on the toolbar, as shown in

Figure 7-18.

Figure 7-18. Click the Polygon icon to draw a collision shape manually

 14. Next, click the icon on the toolbar to turn off (disable) the

Enable Snap and Show Grid option, as shown in Figure 7-19. This

allows us to manually draw an irregular collision shape. If the

option is turned on, we can only draw the collision shape using

the sides of the purple grid.

Figure 7-19. Enable Snap and Show Grid option turned off

ChapTer 7 BuIldInG The GaMe World

176

Note When the icon on the toolbar is highlighted in blue, it means that the
corresponding option is enabled (on). If it’s in white, it implies that the option is
disabled (off).

 15. To draw the collision shape, click different points along the outer

edges of the image, on the editor. Doing so will create a vertex (orange

dot) on the position clicked. Whenever you click a new point, i.e.,

create a new vertex, the previous one gets connected to the new

one, as shown in Figure 7-20 (a) and (b). Do this until the last vertex

connects with the first one, as shown in Figure 7-20 (b). The region

enclosed by the vertices forms the collision shape of the image.

Figure 7-20. (a) Click the outer edges to create vertices. (b) Once the last vertex is
connected to the first one, a collision shape is created

Note The first vertex, or orange dot, becomes visible only once you click the
spot where you want to create the second one. also, if you make a mistake when
drawing the vertices of the collision shape, you can start all over by clicking the
delete polygon icon (trash can icon) on the toolbar.

So far, we have added two of the images from the TileMap to our Tile

palette. We can repeat the entire process for the rest of the images

in our TileMap that we want to add as well. Every time you want to

ChapTer 7 BuIldInG The GaMe World

177

add another tile to the Tile palette, click the New Single Tile button

on the editor, then select the image on the TileMap in the editor, and

finally add a collision shape to it. Note that if you want to use the tile

for creating a background object such as a tree or a rock (which won’t

collide with the player), it doesn’t need a collision shape.

 16. Once you’ve created all the tiles that you want to use for building the

game, click the TileMap node in the Scene dock. You’ll notice that

the Tile palette pops up on the workspace and has all the tiles that

you created! Figure 7-21 shows one such example of a Tile palette.

Figure 7-21. Tile palette

Now, we can use the tiles in our palette to paint our game world! The process is

simple—select the tile from the palette, and then click one of the grids in the workspace

to place it there, as shown in Figure 7-22 (a). Once you place a tile in the workspace, hold

down your left mouse button, and drag your mouse around to “paint” the workspace.

ChapTer 7 BuIldInG The GaMe World

178

Figure 7-22. (a) The tile placed in the workspace is too small. (b) The tile is scaled
up in proportion to the player

ChapTer 7 BuIldInG The GaMe World

179

But the tile is tiny compared to the player! Let’s fix this by changing the scale. With

the TileMap node selected in the Scene dock, head to the Inspector dock and expand the

Transform tab. Then, change the x and y scales to 4, as shown in Figure 7-23. Now, the

tile is scaled up, as shown in Figure 7-22 (b).

Figure 7-23. Setting both the x and y scales of the TileMap equal to 4

Note To delete a tile, hover over it in the workspace, and right-click it once the
blue border appears around it. For deleting a tile that takes up multiple grid cells
in the workspace, put your cursor on the top-left corner of the image (with its
rectangular outline), and once you right-click the blue cell, the image gets deleted.
This is shown in Figure 7-24 (a) and (b).

ChapTer 7 BuIldInG The GaMe World

180

Figure 7-24. (a). Deleting a single-cell-sized tile, (b) deleting a large tile

Now, you can design your game world using all the props and objects from your Tile

palette.

TRY IT!

Painting Your First Game Level

 1. download a TileMap that includes the game objects that you want to use in

your game level, such as platforms, ledges, trees, houses, bushes, rocks, etc.

 2. Create image tiles using the TileMap editor.

 3. Get creative and paint the game level!

ChapTer 7 BuIldInG The GaMe World

181

Note If in your Scene dock the hierarchy of your nodes looks like Figure 7-25 (a),
the player will appear behind the props and objects in your game. Figure 7-26
shows an example of this. on the other hand, if the hierarchy looks like the one
shown in Figure 7-25 (b), the player will appear in front of the objects in your game
scene, as shown in Figure 7-27. In case your Scene dock looks like Figure 7-25 (a),
you can move the player’s node to the bottom of the hierarchy by clicking the
KinematicBody2d node and dragging and releasing it onto the parent node (Game
level). This results in the hierarchy shown in Figure 7-25 (b).

Figure 7-25. (a) The KinematicBody2D is the first child node in the hierarchy.
(b) The TileMap is the first child node in the hierarchy

Figure 7-26. The player appears behind an object in the game scene

ChapTer 7 BuIldInG The GaMe World

182

Figure 7-27. The player appears in front of an object in the game scene

 Camera-Follow
Now, in the game, we want the camera to follow our player as it moves across the game

level. To do this, we can implement camera-follow:

 1. Select the KinematicBody2D node in the Scene dock, and click the

 button to add a child node to it. In the Create New window that

pops up, search for Camera2D, and then click the Create button.

Alternatively, you can also navigate to this node under the path:

Node ➤ CanvasItem ➤ Node2D ➤ Camera2D

Once you click the Create button, Camera2D will be created as a

child of KinematicBody2D, as shown in Figure 7-28.

ChapTer 7 BuIldInG The GaMe World

183

Figure 7-28. Camera2D is created as a child node of KinematicBody2D

When we look at the 2D workspace, a purple-colored rectangle appears around

the player. This represents the boundaries of the game’s camera, i.e., the area that we

see when the game scene is playing. This area moves along with the player, effectively

“following” the player around in the game. This is shown in Figure 7-29.

Figure 7-29. Boundaries of the game camera

ChapTer 7 BuIldInG The GaMe World

184

 2. Select the Camera2D node in the Scene dock, head over to the

Inspector dock, and turn on the Current property, as shown in

Figure 7-30. This sets our camera as active for the current game

scene (GameLevel.tscn).

Figure 7-30. Turn on the current property

 3. Also, turn on the Drag Margin H Enabled and Drag Margin V

Enabled fields, as shown in Figure 7-30. This gives the player some

grace margin to move around left/right or up/down in the game.

This means that the camera moves only when the player gets close

to either the left/right or top/bottom edges of the screen, ensuring

that the camera doesn’t continuously move as the player moves.

ChapTer 7 BuIldInG The GaMe World

185

If you expand the Drag Margin tab in the inspector, as shown in

Figure 7-30, you can see that the default margins are 0.2 on all

four sides, that is, 20 percent of the distance between the center of

the player to one of the edges of the game screen. Increasing this

value will allow the player to move a greater distance toward one

of the edges of the camera boundary without the camera moving.

 4. Change the Left, Top, Right, and Bottom margins to 0.5 to give the

player more room to move without the camera moving.

 5. Play the game scene to see the camera following the player when

it moves along the game level.

Note notice how once you add Camera2d and play the game scene, you will
first see the portion of the workspace that has the camera (with the thick purple
boundaries), instead of seeing the default game screen area (rectangle formed by
the faint purple, pink, and green lines on the workspace).

But as shown in Figure 7-31, the player starts from the middle

portion of the game screen. This is because the camera shows the

portion of the workspace that is on the left of where our platform

actually starts. To fix this, we can change the limits of the camera’s

leftmost position.

ChapTer 7 BuIldInG The GaMe World

186

Figure 7-31. The player starts from the middle of the game screen

 6. Select the Camera2D node in the Scene dock, and, in the

Inspector dock, expand the Limit tab. Change the Left field to 0, as

shown in Figure 7-32. By doing this, we are ensuring that when the

game scene starts playing, the camera’s leftmost limit corresponds

to the left side of the game screen area on the workspace

(indicated by the green vertical line).

Figure 7-32. Set the Left limit of Camera2D to 0

ChapTer 7 BuIldInG The GaMe World

187

 7. Now, play the game scene. You’ll see that now the player starts

from the left portion of the game screen, as shown in Figure 7-33.

Figure 7-33. The player starts from the left part of the game screen

 Creating a Parallax Background
We created our first game level, but our game doesn’t have a background! Instead of a

simple background that stays in one position throughout the game, we can create what’s

called a parallax background. What makes it so different from a regular one is that it is

made up of a number of background layers, each of which moves at a different speed.

So if we have mountains, trees, and clouds in our background, making them move at

different speeds gives an amazing 3D effect to our 2D game. For creating a parallax effect,

we will be using the background image from the same asset pack that we used for getting

the TileMaps. Once you’ve downloaded an image of a background you’d like to use for

your game, follow these steps:

 1. Import the background image into your Godot project by dragging

and dropping it into the FileSystem dock from your computer.

This is shown in Figure 7-34. Next, to ensure that the image is not

blurry, be sure to re-import without filtering. Select the image in

the FileSystem dock, open the Import tab next to the Scene dock,

unselect the Filter property under the Flags tab, and click the

Reimport button.

ChapTer 7 BuIldInG The GaMe World

188

Figure 7-34. Drag and drop the background image into the FileSystem

 2. Add a new node as a child of Game Level (root node). Select the

root node (Game Level) in the Scene dock, and then click the

button to add a child node to it. In the Create New Node window,

search for ParallaxBackground or navigate to it under the

following path:

Node ➤ CanvasLayer ➤ ParallaxBackground

Click the Create button to create ParallaxBackground as a child of

Game Level.

 3. Next, add a ParallaxLayer node as a child of the

ParallaxBackground node. Select the ParallaxBackground node in

the Scene dock; then click the button to add a child node to it.

In the Create New Node window, search for ParallaxLayer or

navigate to it under the following path:

ChapTer 7 BuIldInG The GaMe World

189

Node ➤ CanvasItem ➤ Node2D ➤ ParallaxLayer

Click the Create button to create ParallaxLayer as a child of

ParallaxBackground.

 4. Add a Sprite node as a child of ParallaxLayer, in the same way

that we did the previous two steps. You can navigate to it under

the following path: Node ➤ CanvasItem ➤ Node2D ➤ Sprite.

The node hierarchy of the Scene dock should now look like

Figure 7-35.

Figure 7-35. The node hierarchy after adding the ParallaxBackground,
ParallaxLayer, and Sprite nodes

 5. Select the Sprite node in the Scene dock and then assign the

background image to its Texture property. You can do this by

dragging and dropping the image from the FileSystem dock into

the Texture property of the Sprite in the Inspector dock. This is

shown in Figure 7-36.

ChapTer 7 BuIldInG The GaMe World

190

Figure 7-36. Assign the background image to the Texture property of the
Sprite node

 6. The sky is too small and is centered at the origin of the workspace!

Let’s make it larger, and make sure that the top-left corner of the

sky image coincides with the origin of the workspace instead.

With the Sprite node selected in the Scene dock, expand the Offset

property in the Inspector dock, and uncheck the Centered field, as

shown in Figure 7-37.

Figure 7-37. Uncheck the Centered property of the Sprite node

ChapTer 7 BuIldInG The GaMe World

191

Now, the left side of the sky image is aligned with the leftmost limit of

our game screen, as shown in Figure 7-37.

 7. Next, let’s make the background larger. Expand the Transform

property in the Inspector dock, and change the x and y scales to 8.

(This will differ if you use another background image of a different

size.) This is shown in Figure 7-38.

Figure 7-38. Set the x and y scales of the Sprite node to 8

ChapTer 7 BuIldInG The GaMe World

192

We can’t make it large enough to fit the entire length of the game;

otherwise, the clouds in the image will be huge! Adjust the x and y

scale until the proportion of the background image with respect to

the game looks okay.

 8. Save the scene (Ctrl+S on your keyboard).

When you play the game scene (with the button), you’ll notice

that the background ends after you reach a certain point in the game,

i.e., when you reach the right edge of the image. This is shown in

Figure 7-39. To fix this, we can use an important property called

Mirroring to our advantage. This property enables you to repeat the

background multiple times along the length of your game—

potentially forever! Let’s see how to set this property in the next step.

Figure 7-39. The background ends at a certain point in the game

 9. Select the ParallaxLayer node in the scene dock, and head over

to the Inspector dock. Expand the Motion field, and you’ll see the

Mirroring property, which helps you create an infinitely repeating

scrolling background.

ChapTer 7 BuIldInG The GaMe World

193

 10. Now, since we want the background to repeat after it reaches the

right edge of the image, we need to set the x value of the Mirroring

field equal to the length of the background image. We can

measure it in the in our workspace using Ruler Mode. With the

Sprite node selected in the Scene dock, click the ruler icon on

the 2D toolbar near the top center of the interface, as shown in

Figure 7-40.

Figure 7-40. Click the ruler icon on the toolbar to open Ruler Mode

 11. Next, click the vertical ruler on the left of the workspace, and drag

your mouse toward the right to generate the vertical ruler. Drag

it toward the right until it coincides with the right edge of the

background image, and note the pixel measurement that shows

up. As shown in Figure 7-41, the length of background image

is measured to be 3072 pixels. You can zoom into the image for

greater accuracy, before taking the measurement. You can also

enable Smart Snap (Shift+S).

Figure 7-41. The length of the background image is 3072 pixels

ChapTer 7 BuIldInG The GaMe World

194

Note To remove the horizontal ruler marker, click its left endpoint that intersects
with the vertical ruler (on the left of the workspace), drag it upward, and release it
on the horizontal ruler at the top.

 12. Select the ParallaxLayer in the Scene dock, and expand its Motion

property in the Inspector dock. Set the x field of the Mirroring

property to 3072, as shown in Figure 7-42.

Figure 7-42. Set the x value of the Mirroring property to 3072

Note a shortcut to calculating the length of the background is to select the Sprite
node in the Scene dock, and click the image loaded in the Texture property. The
dimensions of the original image can be seen in the lower-right corner, as shown
in Figure 7-43. Since we have changed the scale of our image to eight times the
original, we get 384 × 8 = 3072 as the total length of the background image—the
same value that we measured using ruler Mode.

ChapTer 7 BuIldInG The GaMe World

195

Figure 7-43. Dimensions of the original background image

 13. Play the game scene, and you’ll see that the background repeats

every 3072 pixels, giving the illusion that it is repeating endlessly!

But one issue still persists—the top of the background might get

cut off if your player reaches a certain height during the game, as

shown in Figure 7-44. We can fix this issue by changing the limits

of our game camera to only show the game area that’s within the

boundaries of the background. But first, we need to measure the

distance of the top and bottom sides of the background image from

the origin of the workspace. We can do this in a similar way as we did

for measuring the length of our background.

ChapTer 7 BuIldInG The GaMe World

196

Figure 7-44. The top portion of the background image is cut off

 14. Select the Sprite node (child of ParallaxLayer) in the Scene dock, and click

the ruler icon on the 2D toolbar to enable Ruler Mode. For generating

the horizontal ruler marker, click and hold your left mouse button down

anywhere on the horizontal ruler on the top of the workspace, and drag

your mouse downward. This is shown in Figure 7-45.

Figure 7-45. Click the horizontal ruler at the top of the interface, and drag
downward to get the horizontal ruler marker

ChapTer 7 BuIldInG The GaMe World

197

 15. Move the dark pink horizontal marker downward until it coincides

with the top of the background in the workspace. As shown in

Figure 7-46, the upper limit of the background is present at 0

pixels above the origin (that is, it is along the line passing through

origin). You can zoom into the background image by pressing the

zoom button on the workspace.

Figure 7-46. The top of the background image is at 0 pixels from the origin

 16. The bottom limit of the background can be measured in a similar

way, by dragging the horizontal ruler marker from the ruler at the

top of the workspace until it coincides with the bottom side of the

background image. You can also choose to cut off some portion of

the background, as shown in Figure 7-47. As we don’t want to see

the entire blue portion of the background, let’s keep the distance

as 1661 pixels below the origin.

ChapTer 7 BuIldInG The GaMe World

198

Figure 4-47. Set the bottom visible limit of the background image to be 1661 pixels

 17. Now that we have our upper and lower limits of the background,

we can adjust the properties of the camera accordingly. Select

the Camera2D node in the Scene dock, and then expand its Limit

property in the Inspector dock.

 18. Based on these measurements that we took in the previous steps,

set the Top limit to 0, and set the Bottom limit to 1661 (these might

differ according to the size and scale of your background image).

This is shown in Figure 7-48.

Figure 7-48. Adjust the top and bottom limits of the Camera2D’s Limit property

ChapTer 7 BuIldInG The GaMe World

199

 19. Next, let’s apply the parallax effect—where the sky appears to be

moving slower than the trees, ground, and other props, giving the

game a depth effect. Select the ParallaxBackground node in the

Scene dock, and expand its Scroll property in the Inspector dock.

Set Base Scale to 0.5 for both x and y, as shown in Figure 7-49.

Figure 7-49. Setting both the x and y values of Base Scale of the
ParallaxBackground to 0.5

Note The original Base Scale of x=1 and y=1 implies that the background moves
at the same rate as the foreground, which makes it seem like it is not moving at
all! When you set x=0.5 and y=0.5, the background moves 50 percent slower than
the foreground, which makes it seem like the clouds in the sky are far away and
hence are moving slower.

 20. Play the game scene to see the parallax effect being applied!

ChapTer 7 BuIldInG The GaMe World

200

TRY IT!

Creating a Parallax Background

 1. Create a parallax background by following the steps in the chapter.

 2. play the game scene for different values of the Base Scale property.

 Design Ideas
Take a look at some design ideas shown in Figures 7-50 through 7-53!

Figure 7-50. Design idea 1

ChapTer 7 BuIldInG The GaMe World

201

Figure 7-51. Design idea 2

Figure 7-52. Design idea 3

ChapTer 7 BuIldInG The GaMe World

202

Figure 7-53. Design idea 4

 Key Takeaways
After creating animations for our player in the previous chapter, we learned the basics of

designing a game level in this chapter. We used a TileMap to paint the images of props

and objects such as platforms, trees, bushes, rocks, and houses in our game. Moreover,

we saw how to splice the TileMap into its individual images and assign a collision shape

for each of them. In addition, we also learned the concept of implementing camera-

follow, as well as how to create parallax backgrounds for our game.

ChapTer 7 BuIldInG The GaMe World

203
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_8

CHAPTER 8

Counting Wins
and Losses

 In this chapter, we’ll learn how to add animated coins and enemies to our
game. We’ll learn how to create instances of the various objects in the main game
scene and use them to keep track of the player score and lives. We’ll dive into
important concepts such as signals, RayCast2D, collision masks and layers, and
changing scenes.

Introducing a reward system in your game can make it more interesting and exciting

to play. The challenge of leveling up by collecting coins and dodging or defeating

enemies along the way motivates the player to keep playing the game!

Let’s see how to add animated coins that the player can collect and enemies that the

player has to avoid!

 Adding Coins to the Game
Follow these steps:

 1. First, let’s import the images of the coins by dragging and

dropping them onto the FileSystem dock, as shown in Figure 8-1.

We’ll be using the Gold, Red, and Silver coins from the Collectibles

& Buttons Asset Pack created by Mihika Dhule. You can download

it here: https://mihikad.itch.io/collectibles- buttons.

https://doi.org/10.1007/978-1-4842-7455-2_8#DOI
https://mihikad.itch.io/collectibles-buttons

204

Figure 8-1. Importing the Coin Sprite Sheets into the project

 2. To keep things organized, let’s create a separate folder to store

the coin Sprite Sheets. Right-click res:// in the FileSystem dock

and select the New Folder option. In the Create Folder pop-

up window, type in a suitable name, such as Coin Animation,

and then click the OK button. Select all the coin images in the

FileSystem dock, as shown in Figure 8-2, and drag and drop them

into the coin_animation folder, as shown in Figure 8-3.

Figure 8-2. Select all the coin images in the FileSystem dock

 3. Now, you can see the three image files, pixel_coins_gold.png,

pixel_coins_red.png, and pixel_coins_silver.png, within the

coin_animation folder by expanding it, as shown in Figure 8-3. To

make sure that the images don’t appear blurry in the editor, select

all of them in the FileSystem dock, then unselect the Filter option

in the Import dock, and click Reimport.

ChapteR 8 CountIng WIns anD Losses

205

Figure 8-3. Drag and drop the coin images into the coin_animation folder

 4. Next, create a new scene for one of the coins by clicking the

button on top of the 2D workspace toolbar, as shown in Figure 8-4.

Figure 8-4. Creating a new scene for the coin

 5. In the new, empty scene that opens up in the 2D workspace, click

the new node button in the Scene dock, and search for the

Area2D node in the Create New Node window, as shown in

Figure 8-5. You can also navigate to it under this path:

ChapteR 8 CountIng WIns anD Losses

206

Figure 8-5. Creating an Area2D node

Node ➤ CanvasItem ➤ Node2D ➤ CollisionObject2D ➤ Area2D

Click the Create button to create Area2D as the root node of

this scene.

 6. Next, add a CollisionShape2D node and a Sprite node as the child

nodes of Area2D. Do this by selecting Area2D in the Scene dock,

clicking the new node button in the Scene dock, and searching

for the respective child node in the Create New Node window.

This is shown in Figure 8-6 (a) and (b).

ChapteR 8 CountIng WIns anD Losses

207

Figure 8-6. (a) Creating a CollisionShape2D node, (b) creating a Sprite node

 7. Now, there is a warning sign next to the CollisionShape2D in the

Scene dock. When we hover our mouse over it, we see that it’s a

node configuration warning that indicates that we need to assign

a shape to this node. To do this, select the CollisionShape2D node

in the Scene dock, and then head over to the Inspector dock. Click

the drop-down menu next to the Shape field, and select New

CapsuleShape2D, as shown in Figure 8-7.

Figure 8-7. Assigning a capsule shape to the CollisionShape2D

ChapteR 8 CountIng WIns anD Losses

208

 8. When you zoom into the origin on the workspace, you’ll see that

the capsule-shaped collision shape is created there. Your node

hierarchy in the Scene dock should look like the one shown in

Figure 8-8.

Figure 8-8. Node scene hierarchy with the Capsule shape assigned to
CollisionShape2D

 9. Next, select the Sprite node in the Scene dock and then drag and drop

one of the coin Sprite Sheet images into its Texture property in the

Inspector dock, as shown in Figure 8-9. Select the CollisionShape2D

in the Scene dock, and adjust its size with the help of the orange

vertices so that it fits the size of the coin as closely as possible.

ChapteR 8 CountIng WIns anD Losses

209

Figure 8-9. Assigning the coin Sprite Sheet to the Texture property of the Sprite node

Now, we need to break the coin Sprite Sheet into its individual coin images and

use them for creating a rotating coin animation. We can easily do this using Godot’s

animation player, in the same way that we animated our player Sprite Sheet in Chapter 6.

Let’s take a look at how to do it for our gold coin.

 Animating the Coin
Follow these steps:

 1. Select the Area2D node in the Scene dock and click the button

to add a child node to it. In the Create New Node window, search

for AnimationPlayer or navigate to it under this path: Node ➤

AnimationPlayer. This is shown in Figure 8-10.

Figure 8-10. Creating an AnimationPlayer node as a child of Area2D

ChapteR 8 CountIng WIns anD Losses

210

On clicking the Create button, the node-scene hierarchy in the Scene

dock should look like the one shown in Figure 8-11.

Figure 8-11. Area2D node with its three child nodes—CollisionShape2D, Sprite,
and AnimationPlayer

 2. Select the AnimationPlayer node in the Scene dock, and the

Animation panel should open up at the bottom of the interface, as

shown in Figure 8-12.

Figure 8-12. The Animation panel

For Godot to break our coin Sprite Sheet down into its individual

image frames, we need to tell it how many rows and columns

there are in it. As shown in Figure 8-13, we can break down the

Sprite Sheet into a single row and five columns of images.

ChapteR 8 CountIng WIns anD Losses

211

Figure 8-13. The coin Sprite Sheet has one row and five columns of images

 3. Select the Sprite node in the Scene dock, and then expand the

Animation tab under the Inspector dock. The Vframes property

specifies the number of rows in the Sprite Sheet, while the Hframes

specifies the number of columns. Both of the properties have

a value of 1 by default. Let’s go ahead and change the Hframes

property to 5. Once you do that, you should see a single coin image

frame on the Godot workspace, as shown in Figure 8-14.

Figure 8-14. The coin Sprite Sheet is broken down into five separate image frames

In this way, our Sprite Sheet is broken down into five different

image frames. The value next to the Frame field in the Inspector

dock indicates the frame number being displayed in the workspace.

As shown in Figure 8-14, frame 0 is currently being shown in the

workspace. We can click the small up and down arrows next to this

field to change the current image frame number.

ChapteR 8 CountIng WIns anD Losses

212

 4. Select the Sprite node in the Scene dock, click the Animation

button on the Animation panel, as shown in Figure 8-15, and

select the option.

Figure 8-15. Click the Animation button and select the New Option

 5. A Create New Animation window pops up prompting you to name

your new animation. Let’s name it Rotate_Coin and then click the

OK button. Note that you can rename the animation by clicking

on the Animation button and selecting the Rename option. Now,

your animation player should look like Figure 8-16, with a blue

marker that you can slide over the different time intervals.

Figure 8-16. Animation player with time intervals

As shown in Figure 8-16, the Snap option is turned on with the

snap time being 0.1 seconds, implying that when you slide the blue

marker, it will move by exactly 0.1 second every time.

 6. Also, a value of 1 next to the stopwatch (Animation Length)

icon indicates that the entire animation will last for 1 second.

Change it to 0.5, and press Enter on your keyboard. This will make

the total animation duration equal to 0.5 seconds, with each of the

five image frames being displayed for 0.1 seconds. Your Animation

panel should look like the one shown in Figure 8-17.

ChapteR 8 CountIng WIns anD Losses

213

Figure 8-17. The animation interval is set to 0.5 second

 7. Make sure that the Sprite node is selected in the Scene dock, and

the blue marker on the animation player is at the beginning of the

timeline (as shown in Figure 8-17). Then, click the key icon

next to the Frame field, for image frame 0 in the Inspector dock. A

window pops ups, asking you to confirm whether you want to

insert the key on the timeline. Click the Create button, and you’ll

see that frame 0, that is, the first coin image in the Sprite Sheet,

appears on the timeline, as shown in Figure 8-18.

Figure 8-18. Frame 0 appears on the animation timeline

 8. Now, click the 0.1-second mark on the timeline in the animation

player for the blue marker to move to that position, as shown in

Figure 8-19.

ChapteR 8 CountIng WIns anD Losses

214

Figure 8-19. Clicking the 0.1s mark on the animation timeline moves the blue
marker to that position

 9. Next, toggle the Frame property in the Inspector dock, change it to

1, and click the key icon . This adds image frame 1 to the

animation timeline, as shown in Figure 8-20.

Figure 8-20. Image frame 1 is added to the animation timeline

 10. This time, the blue pointer automatically moves ahead by 0.1

seconds, that is, at the 0.2-second position on the timeline, once

you add image frame number 1 to it. If not, you can click the

timeline at the 0.2-second position to place the blue marker there.

The Frame property should also automatically increase by one in

the Inspector dock, each time.

 11. In this way, we can add the rest of the image frames onto the

animation track, which should look like the one shown in

Figure 8-21 after adding all the image frames.

ChapteR 8 CountIng WIns anD Losses

215

Figure 8-21. All the image frames are added to the animation track

 12. To play the animation in a loop, click the icon on the animation

timeline, and then click the Play (F5) button. Once you do that,

the animation player continuously cycles through all the image

frames in a loop.

Note to change the speed of the animation, we can modify the total animation
duration and the snap position and then add the image frames at different timing
positions.

 13. We now have the animation for rotating the gold coin! Go ahead

and save the scene (Ctrl+S on the keyboard or Scene ➤ Save

Scene As). Let’s name the scene Gold_coin.tscn, as shown in

Figure 8-22, and then click the Save button.

Figure 8-22. Save the scene as Gold_coin.tscn

ChapteR 8 CountIng WIns anD Losses

216

TRY IT!

Creating a Collectible

 1. Import images or sprite sheets of collectibles such as coins, gems, keys, etc.,

into the godot project.

 2. animate the collectibles using the animation player.

 3. play around with different speeds of rotation.

 Creating a Coin in the Game Level
Now that we have our gold coin, let’s put it in the game. We can do this by creating an

instance of our coin scene, Gold_coin.tscn, in our main scene, GameLevel.tscn. Let’s

see how to do that:

 1. Open the main game scene (GameLevel.tscn) by double-clicking

it in the FileSystem dock.

 2. Next, click the icon (next to the Add Child node icon) on the

Scene dock, as shown in Figure 8-23, and then select Gold_coin.

tscn, as shown in Figure 8-24. This creates an instance of our gold

coin, and its corresponding node, called Area2D, appears in the

Scene dock as a child of the root node (Game Level).

Figure 8-23. Creating an instance as a scene as a node

ChapteR 8 CountIng WIns anD Losses

217

Figure 8-24. Selecting Gold_coin.tscn

 3. Let’s rename the node Area2D to Gold coin. But instead of

changing the name locally in the main game scene, do it in

Gold_coin.tscn, as shown in Figure 8-25. This will ensure that

every time you create another instance of the coin in your main

game scene, it will be named Gold coin, and not Area2D. Open

Gold_coin.tscn, and then double-click Area2D in the Scene dock.

Type in the new name, Gold coin.

Figure 8-25. Rename the Area2D node to Gold coin

ChapteR 8 CountIng WIns anD Losses

218

 4. If you go back to GameLevel.tscn and zoom into the origin on

the workspace, you’ll notice that the “Gold coin” node has been

created there. But it’s too small! Let’s change its size in the original

scene in which it was created. Open Gold_coin.tscn and select

the root node, Gold coin, and then expand the Transform tab on

the Inspector dock. Change to x and y Scale properties to, say, 3

(to scale up the coin). Save the scene.

 5. Next, go back to GameLevel.tscn. You’ll notice that the size of the

coin gets scaled up this time. In the workspace, drag the coin and

place it near the platform, as shown in Figure 8-26.

Figure 8-26. Creating a gold coin in the game level

Note When you are changing the properties of an object, make the changes in
the scene in which they are created so that the change is reflected in all created
instances of the object.

ChapteR 8 CountIng WIns anD Losses

219

 Collecting Coins
Follow these steps:

 1. Open the scene Gold_coin.tscn, and then select the root node

(Gold coin) in the Scene dock. Next, click the icon to attach a

script to it.

 2. A window called Attach Node Script pops up, as shown in

Figure 8-27 (a). As shown, the default name of the script is

Gold_coin.gd. This can be changed if we want to give the script a

different name. Let’s leave it as it is. We can also change the Template

property by expanding its drop-down menu. Go ahead and select the No

Comments option, as shown in Figure 8-27 (b). Click the Create button.

Figure 8-27. (a) Creating a new script for the “Gold coin” node, (b) setting the No
Comments option

This will give us a default script without any comments. Now, let’s

type in the code for playing the coin rotation animation using the

animation player. In the func _ready(), replace the “pass” with the

following line of code:

$AnimationPlayer.play("Rotate_Coin")

 3. Save the script (Ctrl+S on the keyboard).

ChapteR 8 CountIng WIns anD Losses

220

 Collecting the Coin Using Signals
Now, if you play the game using the Play (F5) button, you’ll see the coin rotating in

the game, but your player can’t yet collect the coin; it just passes behind it. Since our

coin is represented by a node of the type Area2D, we can modify our script such that

every time our player passes through the Area2D(the coin), the coin is “collected,” and

the score increases by 1. We can use the concept of signals for this purpose.

In Godot, every node is associated with a number of signals that can be emitted each

time something happens to that particular node. Let’s understand this with the help

of an example. In the Gold_coin.tscn scene, select the “Gold coin” node in the Scene

dock, and then open the Node dock next to the Inspector dock. As shown in Figure 8-28,

this displays all the signals that can be emitted for “Gold coin.”

Figure 8-28. Signals that can be emitted for “Gold coin”

ChapteR 8 CountIng WIns anD Losses

221

For example, the area_entered signal is emitted when another area enters, that is,

comes into contact with the “Gold coin” node. Another signal, area_exited, is emitted

when another area exits, that is, stops being in contact with “Gold coin.” Since a coin is

collected once the player comes in contact with it, we’ll be using the body_entered signal

for collision detection. This signal is emitted when a physics body enters the “Gold coin”

node. Let’s see how to use this signal for coin collection.

 1. With the “Gold coin” node selected in the Scene dock, double-

click the body_entered signal, as shown in Figure 8-29. Make

sure to do this in Gold_coin.tscn and not the main game scene

(GameLevel.tscn).

Figure 8-29. The body_entered signal

 2. Once you do that, the Connect a Signal to a Method window pops

up. Select the “Gold coin” node and click the Connect button, as

shown in Figure 8-30. This will create a function called _on_Gold_

coin_body_entered in the script of Gold coin.

ChapteR 8 CountIng WIns anD Losses

222

Figure 8-30. Connect the body_entered signal to “Gold coin”

 3. Once you click the Connect button, the script Gold_coin.gd will

open, and you’ll see two functions called _ready() and _on_Gold_

coin_body_entered(body) in it, as shown here:

extends Area2D

func _ready():

 $AnimationPlayer.play("Rotate_Coin")

func _on_Gold_Coin_body_entered(body):

 pass

Now, let’s create another function for counting the collected coins.

Open the script of the KinematicBody2D called Player.gd from

the FileSystem dock.

ChapteR 8 CountIng WIns anD Losses

223

 4. Declare a variable called score at the top of the script, and

intialize it to 0, as follows:

var score = 0

 5. Next, create a function called score_count(), as follows:

func score_count():

 score = score + 1

Your script should look like the one shown here:

extends KinematicBody2D

var velocity = Vector2(0,0)

var gravity = 2000

var score = 0

func _physics_process(_delta):

 if Input.is_action_just_pressed("jump") and is_on_floor():

 velocity.y= -1000

 $AnimatedSprite.play("jump")

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -300

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = true

 elif Input.is_action_pressed("right_arrow"):

 velocity.x = 300

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = false

 else:

 $AnimatedSprite.play("idle")

 if not is_on_floor():

 $AnimatedSprite.play("jump")

 velocity.y = velocity.y + gravity *(_delta)

 move_and_slide(velocity, Vector2.UP)

 velocity.x = lerp(velocity.x,0,0.1)

func score_count():

 score = score + 1

ChapteR 8 CountIng WIns anD Losses

224

The score_count() function continually increments the score by 1 each time a new

coin is collected. We can call this function in our script for “Gold coin,” as follows:

 6. Open Gold_coin.gd from the FileSystem dock or by clicking

the icon next to the “Gold coin” node in the Scene dock,

in Gold_coin.tscn.

 7. In func _on_Gold_coin_body_entered(body), replace the pass

keyword with these lines:

body.score_count()

queue_free()

Your code should now look like this:

extends Area2D

func _ready():

 $AnimationPlayer.play("Rotate_Coin")

func _on_Gold_coin_body_entered(body):

 body.score_count()

 queue_free()

• body.score_count(): This line of code calls the score_count()

function of the body that enters the “Gold coin” node. In our

case, the body is the player, and the score_count() function

that we added to Player.gd previously will get called every time

the player enters or comes into contact with the coin, and the

number of coins will then increase by one.

• queue_free(): This is a built-in function to delete an object.

We use this function to delete the coin as soon as it is collected.

 8. Now, let’s go back to our main game scene, GameLevel.tscn.

To insert another coin object in the game, we can just duplicate our

“Gold coin” node in the Scene dock, by selecting it and pressing

Ctrl+D on the keyboard (or right-clicking the node and selecting

the Duplicate option). This copies and pastes the new coin on top

of the original one in the workspace. Click it, and drag it to place it

ChapteR 8 CountIng WIns anD Losses

225

somewhere else in the game. We can do it as many times as we want

to create a new coin in the game. As shown in Figure 8-31, three

coins have been created and placed in the game.

Figure 8-31. Creating and placing coins in the game

 Creating More Collectibles
We can also create different kinds of collectibles such as different coloured coins, gems,

cherries, keys, etc. We can repeat the process that we followed for the “Gold coin” node

and create new scenes for different collectibles.

 1. Create two different scenes for the animated Red and Silver

coins, and name them Red_coin.tscn and Silver_coin.tscn,

respectively. The procedure remains the same as that of creating

the Gold_coin.tscn, with the only difference being in the textures

assigned to the sprites.

We can now create instances of the Red and Silver coins in the main game scene,

GameLevel.tscn.

ChapteR 8 CountIng WIns anD Losses

226

 2. Now, open the main game scene, GameLevel.tscn, and, with the

Game Level node (root node) selected, click the icon in the

Scene dock. Select Red_coin.tscn in the Instance Child Scene

window that pops up, as shown in Figure 8-32.

Figure 8-32. Creating an instance of Red_coin.tscn

 3. Click the Open button to create an instance of the red coin in

GameLevel.tscn, as a child node of Game Level. The red coin now

appears at the origin at the workspace and can be moved and

placed anywhere in the game.

 4. For creating an instance of a Silver coin, click the icon again,

and select Silver_coin.tscn this time. Now, we have instances of

the Red coin, as well as an instance of a Silver coin in the Scene

dock. This is shown in Figure 8-33.

ChapteR 8 CountIng WIns anD Losses

227

Figure 8-33. Scene dock after creating instances of different coins

 5. Create copies of the red and silver coin (Ctrl+D on the keyboard).

Drag and place the different coins at various points in your game

level in the workspace, as shown in Figure 8-34.

ChapteR 8 CountIng WIns anD Losses

228

Figure 8-34. Placing different coins in the game level

 6. Now, when we play the main game scene by clicking the Play

button (F5), our player can collect each coin, which disappears as

soon as it is collected.

TRY IT!

Placing Collectibles in the Game

 1. Create instances of collectibles such as coins in the main game scene.

 2. place different collectibles throughout the game level.

 3. Write a script for increasing the score by 10 every time a collectible is collected.

 Adjusting the Rewards
Now, according to our current scripts, the score count increases by one any time any of

the coins is collected. Instead, if we want to increase the score by a different value for

each different collectible, we can make slight modifications to our scripts as follows:

ChapteR 8 CountIng WIns anD Losses

229

 1. Open the player script, Player.gd, by double-clicking it in the

FileSystem dock.

 2. Replace the score_count() function with the following three

functions:

func score_count_gold():

 score = score + 1

func score_count_red():

 score = score + 5

func score_count_silver():

 score = score + 10

 3. Now, we need to change the scripts for each of the Gold, Silver,

and Red coins.

 4. Now, open the script of the Gold coin, Gold_coin.gd. In the

function _on_Gold_coin_body_entered(body), replace body.

score_count() with body.score_count_gold(). Your script

should look like this:

extends Area2D

func _ready():

 $AnimationPlayer.play("Rotate_Coin")

func _on_Gold_coin_body_entered(body):

 body.score_count_gold()

 queue_free()

 5. In the script of the Red coin, Red_coin.gd, in the function _on_

Red_coin_body_entered(body), replace body.score_count()

with body.score_count_red(). Your script should look like this:

ChapteR 8 CountIng WIns anD Losses

230

extends Area2D

func _ready():

 $AnimationPlayer.play("Rotate_Coin")

func _on_Red_coin_body_entered(body):

 body.score_count_red()

 queue_free()

 6. Lastly, in the script of the Silver coin, Silver_coin.gd, in the

function _on_Silver_coin_body_entered(body), replace the

body.score_count() with body.score_count_silver(). Your

script should look like this:

extends Area2D

func _ready():

 $AnimationPlayer.play("Rotate_Coin")

func _on_Silver_coin_body_entered(body):

 body.score_count_silver()

 queue_free()

 7. With this, the score will increase by 1 for every Gold coin

collected, by 5 for every Red coin collected, and by 10 for every

Silver coin collected. We can change these values according to the

rules of our game.

 Adding Enemies
No game is complete without an enemy that the player can defeat! Let’s see how to add

an enemy to our game.

 1. Import the images of the enemy into the FileSystem dock by

dragging and dropping them from a file on your computer.

ChapteR 8 CountIng WIns anD Losses

231

We’ll be using the Opossum enemy included in the asset pack called Sunny Land,

created by an artist called Ansimuz, as shown in Figure 8-35. This is the same game

art pack that we used for our player sprites and TileMaps. You can download it here:

https://ansimuz.itch.io/sunny- land- pixel- game- art.

Figure 8-35. Opossum enemy from the Sunny Land asset pack

 2. Let’s create a separate folder for our enemy animation. Right-click

the res:// folder, and select the New Folder option. Give the

folder an appropriate name, such as enemy_animation, and click

the OK button. Once it’s created, drag and drop the enemy images

from the FileSystem dock into this new folder. This is shown in

Figure 8-36.

ChapteR 8 CountIng WIns anD Losses

https://ansimuz.itch.io/sunny-land-pixel-game-art

232

Figure 8-36. Creating a new folder for the enemy sprites

 3. Now, create a new scene for the enemy by clicking the new scene

button near the top of the 2D workspace. Click the new node

button in the Scene dock to add a root node, search for

KinematicBody2D, and click the Create button.

 4. Next, add a CollisionShape2D node as a child of

KinematicBody2D. To do this, select KinematicBody2D in the

Scene dock, click the new node button , search for

CollisionShape2D, and click the Create button.

 5. With the CollisionShape2D node selected in the Scene dock,

expand the drop- down menu next to the Shape property in the

Inspector dock, and select the New RectangleShape2D option.

 6. Now, select KinematicBody2D in the Scene dock, click the new

node button , search for AnimatedSprite, and click the Create

button. This adds AnimatedSprite as a child of KinematicBody2D,

as shown in Figure 8-37.

ChapteR 8 CountIng WIns anD Losses

233

Figure 8-37. Creating an AnimatedSprite as a child of KinematicBody2D

 7. Select AnimatedSprite in the Scene dock, and expand the drop-

down menu next to the Frames property in the Inspector dock.

Select the New SpriteFrames option, as shown in Figure 8-38.

Figure 8-38. Creating a New SpriteFrames resource

 8. Click in the Inspector dock next to Frames to open

the SpriteFrames editor at the bottom of the interface.

 9. As shown in Figure 8-39, click the “default” animation name in the

SpriteFrames editor, and rename it to run.

ChapteR 8 CountIng WIns anD Losses

234

Figure 8-39. Renaming the default animation to “run”

 10. Now, drag and drop the enemy images into the SpriteFrames

editor, as shown in Figure 8-40.

Figure 8-40. Creating the run animation for the enemy

 11. With the AnimatedSprite node selected in the Scene dock, select

the Playing property in the Inspector dock. Now, you can see the

run animation of the enemy playing in the 2D workspace, at its

origin. We can change the speed of the animation by changing the

Speed Scale property in the Inspector dock of the AnimatedSprite.

ChapteR 8 CountIng WIns anD Losses

235

 12. Select the CollsionShape2D node in the Scene dock, and adjust

it to fit the sprite as closely as possible, as shown in Figure 8-41.

You can adjust the size and position of the CollisionShape2D by

moving the orange vertices on its edges, as well as by changing its

x and y Position property in the Inspector dock.

Figure 8-41. Adjusting the CollisionShape2D to fit the enemy sprite

 13. Rename KinematicBody2D to Enemy, and save the scene as

Enemy.tscn (Ctrl+Shift+S).

 14. Now, open the main game scene, GameLevel.tscn, and select the

root node, Game Level. Click the button and select Enemy.tscn

in the Instance Child Scene window that pops up; then click the

Open button, as shown in Figure 8-42. This creates an instance of

the enemy in GameLevel.tscn.

ChapteR 8 CountIng WIns anD Losses

236

Figure 8-42. Creating an instance of the enemy scene

 15. The enemy is created at the origin in the workspace, but it’s too

small. Go back to Enemy.tscn, and select the Enemy node in

the Scene dock. In the Inspector dock, expand the Transform

property, and increase the x and y Scale to, say, 3 (to scale up the

enemy size). Save the Enemy.tscn scene.

 16. If you now go back to GameLevel.tscn, you’ll see that the size of

the enemy is now proportional to our player. Drag and place the

enemy on the platform in the game, as shown in Figure 8-43.

ChapteR 8 CountIng WIns anD Losses

237

Figure 8-43. Place the instance of the enemy in the game level

 17. Now, we can create multiple instances of the enemy and place

them throughout the game level! Repeat step 14 every time you

want to create a new instance of the enemy.

 18. Next, we need to write a script for the enemy. Open Enemy.tscn

and select the root node, Enemy; then click the new script button

 to generate a script.

 19. In the Attach Node Script window, navigate to “No Comments”

in the Template property’s drop-down menu, and then click the

Create button, as shown in Figure 8-44. A script called Enemy.gd is

created in the FileSystem dock.

ChapteR 8 CountIng WIns anD Losses

238

Figure 8-44. Creating a script for the enemy called Enemy.gd

 20. Now, in the script Enemy.gd, replace the contents with the

following code:

extends KinematicBody2D

var velocity = Vector2(0,0)

var speed = 100

var direction = -1

func _physics_process(_delta):

 velocity.x = speed * direction

if direction == -1:

 $AnimatedSprite.flip_h = false

 else:

 $AnimatedSprite.flip_h = true

 $AnimatedSprite.play("run")

 move_and_slide(velocity)

ChapteR 8 CountIng WIns anD Losses

239

• Just as we saw in Chapter 5, Vector2(x,y) is used to define

the initial velocity of our kinematic body (Enemy) in the x and

y directions. Here, velocity = Vector2 (0,0) implies that

the velocity of the enemy is initialized to 0, in both the x and y

directions.

• func _physics_process(_delta) is a built-in physics function

that we are using to play the enemy run animation, as well as to

move the enemy left and right.

• The x velocity of the enemy, that is, the horizontal velocity, is

equal to product of speed and direction. We use a variable called

direction to determine whether the enemy is facing left or right.

For facing left, we’ll set direction to -1, and for facing right, we’ll

set the direction to +1. In this way, when the direction (which can

be either -1 or +1) is multiplied with speed, the velocity is either

a negative value or a positive value. A negative value of velocity

implies the speed in the left direction, while a positive value

implies the speed in the right direction.

• If direction is = -1, we don’t flip the Animated Enemy sprite;

hence, we set $AnimatedSprite.flip_h = false. Otherwise,

if the direction is not -1, we flip it by setting $AnimatedSprite.

flip_h = true.

• $AnimatedSprite.play("run") is used to continously play the

run animation for the enemy, while move_and_slide(velocity)

is used to move the enemy according to the speed and direction.

If we play the main game scene by clicking the Play button (F5) , we see the enemy

running toward the left continuously, even after the platform ends, until it goes off the

screen. But we don’t want that. Instead, we want it to run back and forth along the

platform. We also need a way to change the direction of the enemy every time it reaches

either the left or right edge so that it doesn’t go beyond the cliff. For doing this, we need a

way to detect the edge of a cliff—through the use of raycasts.

ChapteR 8 CountIng WIns anD Losses

240

TRY IT!

Creating an Enemy

 1. Import images or a sprite sheet of an enemy character into the godot project.

 2. Create different animations for the enemy, such as running, walking, or flying.

 3. Write a script for making the enemy walk across a platform in the game.

 Detecting Ledges with a Raycast
In Godot, a raycast represents a line that can be used for detecting collisions along its

path. It can be placed on the enemy sprite to collide with the ground until the enemy

reaches the edge of a cliff. Once it does that, it won’t collide with the ground anymore,

and we can then use this detection mechanism to change the direction of the enemy.

Let’s understand this by diving right into the implementation of this scenario.

 1. Open the Enemy scene, Enemy.tscn, and select the Enemy node

(root node) in the Scene dock. Next, click the new node button ,

and search for and add a RayCast2D node as the child node of

Enemy, as shown in Figure 8-45. Then, save the scene (Ctrl+S on

the keyboard).

Figure 8-45. Creating a RayCast2D node as a child of the Enemy node

The RayCast2D gets added to center of the Enemy sprite in the

workspace, as shown in Figure 8-46.

ChapteR 8 CountIng WIns anD Losses

241

Figure 8-46. The RayCast2D gets created in the workspace

 2. By default, it is disabled, and it can be enabled by selecting the

RayCast2D node in the Scene dock and then checking the Enabled

option in the Inspector node, as shown in Figure 8-47.

Figure 8-47. Enabling the RayCast2D

 3. Now, let’s move the RayCast2D toward the front part of the Enemy

sprite so that it can detect the cliff when the enemy is moving

toward it, as shown in Figure 8-48 (a). To do this, we can adjust

the x value of the Position property, under the Transform tab in

the Inspector. Let’s change it to, say, -15. You can adjust this value

until it is as close to the front of the Enemy sprite as possible.

ChapteR 8 CountIng WIns anD Losses

242

Figure 8-48. (a) Moving the RayCast2D to the front of the Enemy sprite, (b)
shortening the length of the RayCast2D

 4. Also, adjust the y value of the Cast To property so that it is close

to the bottom edge of the Enemy sprite, while leaving some extra

space. Let’s change it to, say, 20. You can adjust this value until it

as close to the bottom edge of the Enemy sprite as possible. The

RayCast2D is shortened in length, as shown in Figure 8-48 (b).

Save the scene (Ctrl+S on the keyboard).

 5. Next, open the Enemy script, Enemy.gd, and add the following

lines inside the _physics_process(_delta) function:

if $RayCast2D.is_colliding() == false:

 direction = direction * -1

 $RayCast2D.position.x *= -1

Now, your script with the proper indentations should look like the

code shown here:

extends KinematicBody2D

var velocity = Vector2(0,0)

var speed = 100

var direction = -1

ChapteR 8 CountIng WIns anD Losses

243

func _physics_process(_delta):

 velocity.x = speed * direction

 if direction == -1:

 $AnimatedSprite.flip_h = false

 else:

 $AnimatedSprite.flip_h = true

 $AnimatedSprite.play("run")

 move_and_slide(velocity)

 if $RayCast2D.is_colliding() == false:

 direction = direction * -1

 $RayCast2D.position.x *= -1

 6. Now if we play the main game scene by clicking the Play button

(F5) , we can see the enemy going back and forth along the

platform, without falling off! Once the enemy reaches one end of

the platform, it turns and continues in the other direction.

(The sprite is flipped horizontally.) This is shown in Figure 8-49.

Figure 8-49. The enemy turns and continues in the other direction on reaching
one end of the platform

ChapteR 8 CountIng WIns anD Losses

244

 Colliding with the Enemy
Now that we have our enemy in the game scene, let’s work on what should happen if our

player runs into it. Let’s implement a system where every time the player gets hit by the

enemy, the player loses one life. If the player has no lives left, then it’s “Game Over”!

 1. Open Enemy.tscn, select the Enemy node, click the Add New

Node button , and add an Area2D as the child of enemy.

Rename the Area2D node to CollisionChecker.

 2. Next, add a CollisionShape2D as the child of the CollisionChecker

node, and assign a RectangleShape2D to it from the Shape field in

the Inspector dock. Your Scene dock should look like Figure 8-50.

Figure 8-50. Scene dock for the Enemy.tscn

 3. Adjust the CollisionShape2D of the CollisionChecker in the

workspace so that it fits as closely to the enemy sprite as possible,

as shown in Figure 8-51. You can change its position by changing

the x and y Position properties in the Inspector dock under the

Transform tab.

ChapteR 8 CountIng WIns anD Losses

245

Figure 8-51. Adjusting the size of the CollisionShape2D

 4. Now, select the CollisionChecker node in the Scene dock, and

then head over to the Node dock. Double-click the body_entered

signal and, in the Connect a Signal to a Method window, click the

Connect button, as shown in Figure 8-52.

Figure 8-52. Connect body_entered signal to enemy node

ChapteR 8 CountIng WIns anD Losses

246

 5. Once you do that, the function _on_CollisionChecker_body_

entered(body) gets created inside the Enemy script, Enemy.gd.

Inside this function, add the following lines of code:

print("enter enemy")

lives = lives – 1

if(lives == 0):

 get_tree().change_scene("res://GameLevel.tscn")

As seen in the last line, get_tree().change_scene() can be

used for changing scenes. Whenever the player collides with the

enemy, the number of lives reduces by 1. Once the number of lives

becomes 0, we will reload the the main game scene, GameLevel.

tscn. We can also load another scene called GameOver.tscn

instead. Once we have a Game Over scene (we’ll make it in the

next chapter), we can replace GameLevel.tscn with GamerOver.

tscn in the last line.

 6. Declare a variable called lives at the top and initialize it to 3 as

follows:

var lives = 3

This implies that the player has three lives in total. Every time it

hits an enemy, it loses a life! Make sure to add multiple instances

of the enemy throughout the game level. Your enemy script

should now look like the one shown below:

extends KinematicBody2D

var velocity = Vector2(0,0)

var speed = 100

var direction = -1

var lives = 3

ChapteR 8 CountIng WIns anD Losses

247

func _physics_process(_delta):

 velocity.x = speed * direction

 if direction == -1:

 $AnimatedSprite.flip_h = false

 else:

 $AnimatedSprite.flip_h = true

 $AnimatedSprite.play("run")

 move_and_slide(velocity)

 if $RayCast2D.is_colliding() == false:

 direction = direction * -1

 $RayCast2D.position.x *= -1

func _on_CollisionChecker_body_entered(body):

 print("enter enemy")

 lives = lives - 1

 if(lives == 0):

 get_tree().change_scene ("res://GameLevel.tscn")

Before playing the game scene, we need to tell Godot which objects in our game can

collide with each other. If we don’t do that, it might cause unwanted glitches and bugs in

the game! Let’s see how to do that with the help of collision layers and collision masks.

 Collision Layer and Collision Mask
The Godot engine has properties called collision layers and collision masks for detecting

whether two physics bodies are intersecting or in contact with each other at any

given time.

• Collision layers: Determine the layers that an object exists in

• Collision masks: Determine the layers that the given object will scan

for collisions

If you select any physics body node in the Scene dock, such as KinematicBody2D,

and then expand the Collision property in its Inspector dock, you’ll see two properties

called Layer and Mask. This is shown in Figure 8-53.

ChapteR 8 CountIng WIns anD Losses

248

Figure 8-53. Collision Layer and Mask properties

There are different layers and masks (each represented by one square) that a

physics object can be assigned to. A total of 20 layers are available in the editor, and

you can set multiple masks for every layer. You can set a layer for a node by clicking the

corresponding square. We can control which objects in our game can collide and thus

interact with each other by setting various layers and masks for them. For example, in

our game, we don’t want the enemy to be able to collide and collect a coin, so we’ll place

the enemy in a different layer than the coin, and make sure that their masks are different.

Let’s see how this works in practice.

 1. Navigate to Project ➤ Project Settings at the top of the interface.

In the Project Settings window, in the General tab, scroll down

and double-click 2d Physics under Layer Names. This is shown in

Figure 8-54.

ChapteR 8 CountIng WIns anD Losses

249

Figure 8-54. 2D physics layers

 2. Here, we can name the different layers and assign them to various

physics bodies that we have in our project. Let’s name them as

shown in Figure 8-55.

Figure 8-55. Renaming the 2D physics layers

ChapteR 8 CountIng WIns anD Losses

250

Now we can set the collision layers and masks for the different physics objects in

our game. Let’s set the layers and masks for the player, enemy, coins, fall area, and

finish area.

 Player
Open the Player scene (Player.tscn), and select the KinematicBody2D node. Set the

collision layer and mask by clicking the three dots (...) next to them, as shown in

Figure 8-56 (a) and 8-56 (b), respectively. This means the player only scans for collisions

with other objects that are also placed in the Player layer.

Figure 8-56. (a) Setting the collision layer for the player, (b) setting the collision
mask for the player

 Enemy
Open the Enemy scene, Enemy.tscn.

 1. Select the Enemy node (root node) in the Scene dock, and then set the

collision layer and mask, as shown in Figures 8-57 (a) and 8-57 (b),

respectively.

ChapteR 8 CountIng WIns anD Losses

251

Figure 8-57. (a) Setting the collision layer for the Enemy node, (b) setting the
collision mask for the Enemy node

 2. Select the CollisionChecker node in the Scene dock, and set the

collision layer and collision mask, as shown in Figure 8-58 (a)

and 8-58 (b).

Figure 8-58. (a) Setting the collision layer for the CollisionChecker node, (b)
setting the collision mask for the CollisionChecker node

ChapteR 8 CountIng WIns anD Losses

252

 Coin
Open the Coin scene, Gold_coin.tscn. Select the “Gold coin” node, and set the collision

layer and mask, as shown in Figure 8-59 (a) and 8-59 (b).

Figure 8-59. (a) Setting the collision layer for the “Gold coin” node, (b) setting the
collision mask for the “Gold coin” node

 Detecting Falls
If the player falls off the edge of the cliff, we can detect this when the player enters a

certain area near the cliff, using the concept of signals. Let’s see how to implement this.

 1. In the main game scene, GameLevel.tscn, add a new node as a

child of Game Level (the root node). Select Game Level in the

Scene dock, and then click the new node button . In the Create

New Node window, search for Area2D, and then click the Create

button. Rename the Area2D as Fall Area.

 2. Fix the “Node configuration warning” next to Fall Area by adding a

CollisionShape2D node as its child. Do this by selecting Fall Area

in the Scene dock, then clicking the new node button , and

searching for CollisionShape2D; then click the Create button.

ChapteR 8 CountIng WIns anD Losses

253

Figure 8-60. The CollisionShape2D is created at the origin

 3. Select CollisionShape2D in the Scene dock, and then expand the

drop-down menu next to the Shape property in the Inspector

dock. Select the New RectangleShape2D option.

 4. Now, as shown in Figure 8-60, the Fall Area is created at the

origin on the workspace. Before moving it, bind it with its

CollisionShape2D node by selecting Fall Area in the Scene dock

and then clicking on the bind icon next to the lock icon on the 2D

toolbar.

 5. If you zoom into the workspace at the origin, you’ll be able to see

the CollsionShape2D with orange vertices on its edges. Drag these

vertices to make the shape longer, and then move and place the

Fall Area near the bottom of the cliffs in your game, as shown in

Figure 8-61.

ChapteR 8 CountIng WIns anD Losses

254

Figure 8-61. Placing the Fall Area at the bottom of the cliffs

When the player enters the Fall Area after falling off the cliff, the game will detect

this. Let’s see how to restart the game every time this happens.

 Changing Scenes
Now, every time our player collides with an enemy or falls off a cliff, it loses a life, and the

current game level restarts. Let’s see how to change or restart a scene in Godot.

 1. Select the Fall Area in the Scene dock, and then head over to the

Node dock to see its associated signals, as shown in Figure 8-62.

ChapteR 8 CountIng WIns anD Losses

255

Figure 8-62. Signals that can be emitted for the Area2D node

 2. Just as we did for the coins, double-click the body_entered

signal. In the Connect a Signal to a Method window, select the

KinematicBody2D node, and click the Connect button, as shown

in Figure 8-63.

ChapteR 8 CountIng WIns anD Losses

256

Figure 8-63. Connect the body_entered Signal to the KinematicBody2D

 3. Once you do that, a function called _on_Fall_Area_body_

entered(body) gets created and added at the bottom of the Player

script, Player.gd. Modify the function as follows:

func _on_Fall_Area_body_entered(body):

 get_tree().change_scene("res://GameLevel.tscn")

 4. We can create another Area2D in our main game scene and place

it at the end of the level, such as on the door of the house, as

shown in Figure 8-64. Every time the player enters this area, that

is, “enters” the door of the house, the current game level finishes,

and the next game level loads.

ChapteR 8 CountIng WIns anD Losses

257

Figure 8-64. An Area2D is placed on the door of a house object in the game

 5. We can rename this Area2D to an appropriate name such as

Finish Level Area, as shown in Figure 8-65.

Figure 8-65. Area2D is renamed to Finish Level Area

ChapteR 8 CountIng WIns anD Losses

258

 6. Next, we need to add another signal to this area for switching

scenes once it is entered. Select the Finish Level Area (the

Area2D) node in the Scene dock, and then open the Node

dock next to the Inspector dock. Double-click body-entered,

select the KinematicBody2D node in the Connect a Signal to a

Method window, and click the Connect button. This is shown in

Figure 8-66.

Figure 8-66. Connecting the body_entered signal to the KinematicBody2D

 7. A function called _on_Finish_Level_Area_body_entered(body)

is created in our Player script, Player.gd. Replace the pass in the

function with the following line:

get_tree().change_scene("res://GameLevel.tscn")

Once the player reaches the house placed at the end of Level 1, the game reloads the

current level. If we have another level designed in a scene called Level2.tscn, we can

write that instead of GameLevel.tscn to load the scene corresponding to the next level.

ChapteR 8 CountIng WIns anD Losses

259

TRY IT!

Wins and Losses

 1. Write scripts for keeping track of the score and lives of the player.

 2. Create another game level, and load it every time the player completes the first

game level.

 Fall Area and Finish Level Area Collision
Since we want the Fall Area and the Finish Level Area to able to collide with only the

player, we have to set their collision layer and mask properties accordingly. Open the

main game scene GameLevel.tscn, and select the Fall Area node. Set the collision layer

and mask according to Figure 8-67 (a) and 8-67 (b). Then, select the Finish Level Area

node and do the same, as shown in Figure 8-68 (a) and 8-68 (b).

Figure 8-67. (a) Setting the collision layer for the Fall Area Node, (b) setting the
collision mask for the Fall Area Node

ChapteR 8 CountIng WIns anD Losses

260

Figure 8-68. (a) Setting the collision layer for the Finish Level Area Node,
(b) setting the collision mask for the Finish Level Area Node

 Key Takeaways
In this chapter, we learned how to import and animate a collectible using the animation

player. We also understood the concept of creating instances of objects in a scene. We

wrote various scripts for implementing a coin collection and player life system, as well as

for changing scenes if the player lost the current game level. We created an enemy that

could independently move along a platform in the game and cause the player to lose a

life on coming into contact with it. Moreover, we took a look at many various concepts

such as signals, RayCast2D, collision masks and layers, and changing scenes.

ChapteR 8 CountIng WIns anD Losses

PART IV

Game Enhancements and
Export

263
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_9

CHAPTER 9

Game GUI

 In this chapter, you’ll learn how to use Godot’s graphical user interface (GUI)
components to design the main title screen and the Game Over screen. We’ll also
create a heads-up display (HUD) to display the player’s score and lives. Lastly, we’ll
understand the process of adding music and sound effects to our game.

The GUI is essential to every game. It includes components that the player sees and

can use for interacting with the game, such as the following:

• Game background

• Fonts for displaying text such as the game title

• Buttons such as Play, Pause, Quit

• Menus such as Settings/Options, Levels, Objectives

• Icons for connecting to the in-game store and various social media

platforms

• Other screens such as Leaderboards and Achievements,

Game Over/Win Screens

The GUI can be designed according to the theme and can greatly enhance the look

of your game. The HUD is the part of the GUI that displays various aspects of the game

such as the character’s level, health, score, and remaining lives.

Now, let’s jump right into the design of the GUI and HUD of our game!

https://doi.org/10.1007/978-1-4842-7455-2_9#DOI

264

 Creating the HUD
In the previous chapter, we created and added animated coins, as well as an enemy to

our game level. When the player collects a coin or loses a life, we want the HUD to show

this. Let’s see how to create one.

 1. Open Level 1 of the Game scene, i.e., GameLevel.tscn, by double-

clicking it in the FileSystem dock.

 2. Select the root node, Game Level, and click the button to add a

child node. Search for CanvasLayer, and click the Create button,

as shown in Figure 9-1. This adds the node as a child of the Game

Level node and is separate from the rest of the nodes in this scene.

You can see this in Figure 9-2.

Figure 9-1. Creating a new CanvasLayer node

CHapter 9 Game GUI

265

Figure 9-2. The CanvasLayer node is added to the node hierarchy

 3. Now, we’ll be adding the rest of the HUD components as children

of the CanvasLayer node.

 4. With the CanvasLayer node selected, add a TextureRect node and

Label node as its children by clicking the button in the Scene

dock and then searching for the respective node in the Create New

Node window, as shown in Figure 9-3 (a) and (b).

Figure 9-3. (a) Adding a TextureRect node, (b) adding a Label node

CHapter 9 Game GUI

266

 5. The TextureRect and Label nodes will be added as children of the

CanvasLayer node, as shown in Figure 9-4 (the order of the nodes

doesn’t matter).

Figure 9-4. The TextureRect and Label nodes are added as children of the
CanvasLayer node

 6. Now we will use the Label node that we added to the CanvasLayer

to display the total score. But for displaying the text on the label,

we need to first assign a custom font to label. For that, we will

need to first import the custom font that we want to use into our

Godot project by dragging and dropping them into the FileSystem

dock, as shown in Figure 9-5.

Figure 9-5. Importing the fonts into the project

We have imported three fonts called Kenny Blocks.ttf, Kenny Future Narrow.ttf

and Kenny Future.ttf into the project. You can download these, as well as other fonts,

from https://www.kenney.nl/assets/kenney- fonts.

CHapter 9 Game GUI

https://www.kenney.nl/assets/kenney-fonts

267

 7. With the Label node selected in the Scene dock, expand the

Custom Fonts tab in the Inspector dock. Click the small arrow

next to the “empty” field of the Font property, and select New

DynamicFont, as shown in Figure 9-6.

Figure 9-6. Selecting New DynamicFont

 8. Then, click DynamicFont that appears in the Font property’s field,

as shown in Figure 9-7.

Figure 9-7. Clicking DynamicFont in the Font property field

 9. This will open various property tabs such as Settings, Extra

Spacing, Font, and Resource. Expand the Font property tab, and

drag and drop the font you want to use, e.g., Kenny Future Narrow.

ttf from the FileSystem dock into the Font Data property. Increase

the size of the font to, say, 60, by changing the Size property on the

Settings tab, as shown in Figure 9-8.

CHapter 9 Game GUI

268

Figure 9-8. Assigning a font and increasing its size

 10. To change the color of the font, expand the Custom Colors tab,

and then click the black rectangle next to the Font Color property

to open up a ColorPicker window, as shown in Figure 9-9. We’ll

select Black as our font’s color.

CHapter 9 Game GUI

269

Figure 9-9. The ColorPicker window

Note You can click and drag your mouse anywhere in the colored window or in
the color slider on the right, or you can adjust the value of the r (red), G (Green),
B (Blue), or a (alpha, i.e., transparency) properties to select a certain color. You can
also type in the hex value of a color—which is a numerical value that represents a
color in the 32-bit color space.

 11. In the Text property in the Inspector dock, enter the text Score:
which will then appear in the workspace, as shown in Figure 9-10.

CHapter 9 Game GUI

270

Figure 9-10. Entering the text to be displayed by the label

 12. We can save this font resource for later use. Select the Label node

in the Scene dock, and expand the Custom Fonts tab in the

Inspector dock. Click the small arrow next to Dynamic Font

 in the Font property, and select the Save option.

Next, in the Save Resource As window that pops up, enter the

filename (and .tres), e.g., Mylabelfont.tres, and click the Save

button. Now, Mylabelfont.tres gets saved as a resource in the

FileSystem dock and can be dragged and dropped into the Font

field on the Custom Fonts tab for other components such

as labels.

 13. Next, let’s add another label that will display the numerical value

of the total score. Select the CanvasLayer node in the Scene dock,

click the button, and then search for Label in the Create New

Node window.

 14. Let’s rename this label as ScoreValue, as shown in Figure 9-11.

Figure 9-11. Renaming the label as ScoreValue

CHapter 9 Game GUI

271

 15. Then, move it next to Score: in the workspace, and make it larger

by pulling on its orange vertices, as shown in Figure 9-12.

Figure 9-12. Moving the label and making it larger

 16. Now, just like we did for the Score: label, we will assign a custom

font to it. With the Score Value node selected in the Scene dock,

expand the Custom Fonts property in the Inspector dock, and

select DynamicFont from the drop-down menu. Then click

DynamicFont that appears in the Font property. Expand the Font

tab under Extra Spacing, and then drag and drop the Font file (.ttf)

from the FileSystem dock into the empty field next to Font Data.

 17. In the Text field in the Inspector dock, type in 00 for now.

 HBoxContainer and VBoxContainer
We can make use of a GUI component called HBoxContainer to keep our labels aligned

to the top-left corner of the screen even if the window size changes. HBoxContainer

stands for Horizontal Box Container, and it arranges its child nodes horizontally, that is,

from left to right, in the GUI. Another type of container in Godot is called VBoxContainer,

or Vertical Box Container, which arranges its child nodes in a list, that is, from top to

bottom on the GUI.

Now, let’s see how we can make use of the HBoxContainer for our labels.

 1. In the main game scene, GameLevel.tscn, select the CanvasLayer

node, and then add an HBoxContainer as its child. Expand the

HBoxContainer in the workspace so that it is large enough to hold

the two labels (displaying the score), as shown in Figure 9-13.

CHapter 9 Game GUI

272

Figure 9-13. Expanding the HBoxContainer

 2. Next, select the Label and ScoreValue nodes, and then drag and

drop them onto the HBoxContainer so that it becomes their

parent node. You can see this in Figure 9-14.

Figure 9-14. Assigning Label and ScoreValue as child nodes of HBoxContainer

 3. Now, with the HBoxContainer selected in the Scene dock, expand

its Margin property in the Inspector dock, and set its Left margin

to a certain value, say 30, shown in Figure 9-15. This will ensure

that there is some space between the top-left edge of the screen

and the HBoxContainer.

Figure 9-15. Moving the label and making it larger

CHapter 9 Game GUI

273

 Creating a Script for the HUD
Now we need to create a simple script for this label for it to be able to change the value as

the player’s score increases.

 1. Select the CanvasLayer in the Scene dock, and then click the new

script icon. In the Attach Node Script window that pops up,

select No Comments in the Template field, and then click the

Create button.

 2. This will create and open up a script called CanvasLayer.gd.

 3. If you have used a HBoxContainer for encapsulating the Label

nodes, then type in the following script:

extends CanvasLayer

var score = 0

func _ready():

 $HboxContainer/ScoreValue.text = String(score)

 4. In case you haven’t used an HBoxContainer node, and if your

ScoreValue label is a child of the CanvasLayer node, then type in

the following script instead:

extends CanvasLayer

var score = 0

func _ready():

 $ScoreValue.text = String(score)

The script should look like the one shown earlier if in your node hierarchy the

ScoreValue node is a child of CanvasLayer node.

Here, we are creating a variable called score and initializing it to 0. Now if you play

the scene, you can see that the label will display this score as 0, as it converts the integer

value to a String value.

CHapter 9 Game GUI

274

Now we need a way to keep track of the score and increase it every time the player

collects the coin. In the previous chapter, we used the player script (Player.gd) to keep

track of the score, but now we will make the HUD calculate it instead. In Player.gd, we

had three functions that increased the score by 1, 5, and 10 when a Gold, Red, or Silver

coin was collected respectively. This is shown here:

func score_count_gold():

 score = score + 1

 print(score)

func score_count_red():

 score = score + 5

 print(score)

func score_count_silver():

 score = score + 10

 print(score)

Let’s see how to use custom signals for making the HUD keep track of the score.

 Custom Signals for Coin Collection
Follow these steps:

 1. Open the player script, Player.gd. Declare three signals at the top

of the script as follows:

signal gold_coin_collected

signal red_coin_collected

signal silver_coin_collected

These are customs signals defined by us that we can use, just like other signals.

 2. Replace the contents of the score_count_gold(), score_count_

red(), and score_count_silver() functions, as shown here:

func score_count_gold():

 emit_signal("gold_coin_collected")

CHapter 9 Game GUI

275

func score_count_red():

 emit_signal("red_coin_collected")

func score_count_silver():

 emit_signal("silver_coin_collected")

 3. Now, open the script for the Gold coin, Gold_coin.gd. Recall how

we created the following function in this script:

func _on_Gold_coin_body_entered(body):

 body.score_count_gold()

 queue_free()

This function detects when the player enters the coin and then calls score_count_

gold() declared in Player.gd. This function, score_count_gold(), then emits our

custom signal gold_coin_collected every time a Gold coin is collected. Similarly, when

a Red coin is collected, the red_coin_collected signal is emitted, and when a Silver coin

is collected, the silver_coin_collected signal is emitted.

We can now use these signal to enable the HUD to calculate the total score.

 4. Now that we’ve created a custom signal that is emitted every

time the player collects a coin, we need to link it up with the

instances of the coins that we have in our Game Level scene

(GameLevel.tscn).

 5. First, go ahead and delete all extra instances of the coins from the

Scene dock, and keep only one instance each of the Gold, Red,

and Silver coins. Figure 9-16 shows the Scene dock before and

after deleting all the extra coin instances.

CHapter 9 Game GUI

276

Figure 9-16. (a) Before deleting extra instances of coins, (b) after deleting extra
instances of coins

 6. Now, select the Player node in the Scene dock (In the main game

scene GameLevel.tscn) (KinematicBody2D), and open the Node

dock next to the Inspector dock. You’ll see your custom signals, as

shown in Figure 9-17.

CHapter 9 Game GUI

277

Figure 9-17. Custom signals appear in the Node dock

 7. Double-click gold_coin_collected(), and then select the

CanvasLayer node in the Connect a Signal to a Method window,

as shown in Figure 9-18, and click the Connect button.

Figure 9-18. Selecting the CanvasLayer node

CHapter 9 Game GUI

278

Note It’s important to choose the CanvasLayer script so that the
_on_KinematicBody2D_gold_coin_collected function is created in
CanvasLayer.gd and it can be used for calculating the total score.

 8. Once you click the Connect button, the HUD’s script,

CanvasLayer.gd, opens, and a function called _on_

KinematicBody2D_gold_coin_collected is created inside it. In

this function, replace the pass with the following lines:

score = score + 1

_ready()

 9. Next, repeat steps 3 to 5 two more times, once for the Red coins

and another for collecting the silver coins, by selecting the

red_coin_collected() and silver_coin_collected() signals,

respectively.

Your script should now look like the one shown here:

extends CanvasLayer

var score = 0

func _ready():

 $ScoreValue.text = String(score)

func _on_KinematicBody2D_gold_coin_collected():

 score = score + 1

 _ready ()

func _on_KinematicBody2D_red_coin_collected():

 score = score + 5

 _ready ()

func _on_KinematicBody2D_silver_coin_collected():

 score = score + 10

 _ready ()

CHapter 9 Game GUI

279

Note recall that if in your node hierarchy, HBoxContainer is a parent of the
ScoreValue node, then in under the _ready function, $ScoreValue will be
replaced with $HBoxContainer/ScoreValue.

 10. Now, go back to the Game scene, GameLevel.tscn. We can

duplicate the Gold coin instances to create more Gold coins and

place them in our game level. To do so, right-click the Gold coin

node (instance) in the Scene dock, and click Duplicate, as shown

in Figure 9-19 (or use the keyboard shortcut Ctrl+D).

Figure 9-19. Duplicating the Gold coin instance

 11. This creates a duplicated instance called “Gold coin2” in the

Scene dock and copies and pastes the corresponding coin in the

workspace, on top of the original gold coin. Move it around and

place it next to the first one, as shown in Figure 9-20. We can do this

multiple times to get more Gold coins in our game level. Do the same

for the other two types of coins, that is, the Red and Silver coins.

CHapter 9 Game GUI

280

Figure 9-20. Placing various coins around the game level

 12. After placing all the coins, play the game scene. Now, every time

the player collects a Gold coin, the score increases by 1. Similarly,

the score increases by 5 every time a Red coin is collected, and by

10 every time a Silver coin is collected. As shown in Figure 9-20,

the score is initially 0. After collecting three Gold coins, the score

increases to 3, as shown in Figure 9-21.

CHapter 9 Game GUI

281

Figure 9-21. The score becomes 3 after collecting three Gold coins

 Displaying the Player’s Lives
We can calculate and display the number of lives that the player has left in a similar way

as we displayed the score. We’ll display a red heart for every life that the Player has, just

below the score in the HUD. Let’s see the steps involved.

 1. Select the TextureRect node (child node of CanvasLayer) in the

Scene dock. Then, drag and drop the image of a heart from the

FileSystem dock into the Texture property of the TextureRect node

in the Inspector dock, as shown in Figure 9-22.

CHapter 9 Game GUI

282

Figure 9-22. Assigning the image of the heart to the Texture property

We have used the heart image from the Collectibles & Buttons asset pack

designed by Mihika Dhule. You can download it here: https://mihikad.itch.io/

collectibles- buttons.

Note If the heart image appears blurry on the workspace, select the image in the
FileSystem dock, open the Import tab next to the Scene dock, deselect the Filter
property under the Flags field, and click reimport.

 2. Move the heart image down and position it below the Score label

in the workspace. To make the heart larger in size, select the

Expand property of the TextureRect node in the Inspector dock,

and then pull on the orange vertices on the TextureRect in the

workspace. This is shown in Figure 9-23.

CHapter 9 Game GUI

https://mihikad.itch.io/collectibles-buttons
https://mihikad.itch.io/collectibles-buttons

283

Figure 9-23. Positioning the heart below the score and making it larger

 3. Now, duplicate the TextureRect node in the Scene dock two more

times (Ctrl+D). In the workspace, move and position the three

TextureRect nodes next to each other, as shown in Figure 9-24.

Figure 9-24. Place the TextureRect nodes next to each other

Note to make it easier to align these nodes, you can use a container node
as their parent, e.g., HBoxContainer. alternatively, you can enable Smart Snap
(Shift+S) to make placement easier.

 4. Now, open the player script, Player.gd. At the top of the script,

declare a variable called lives, initialize it to 3, and declare a

custom signal called livescount as follows:

var lives = 3

signal livescount

CHapter 9 Game GUI

284

 5. Create a new function called func hit_enemy(), as follows:

func hit_enemy():

 lives = lives -1

 emit_signal("livescount")

 6. Modify the functions _on_Fall_Area_body_entered and _on_

Finish_Level_Area_body_entered as follows:

func _on_Fall_Area_body_entered(body):

 get_tree().change_scene("res://GameOver.tscn")

func _on_Finish_Level_Area_body_entered(body):

 get_tree().change_scene("res://GameOver.tscn")

 7. Create a new, temporary Game Over scene by clicking the New

Scene button near the top of the workspace (or navigating to

Scene ➤ New Scene from the toolbar at the top left of the

interface). In this new scene, add a Control node as the root node

by clicking User Interface, and save the scene as GameOver.tscn.

This scene will act as a placeholder for the Game Over scene, and

we will modify it later in the chapter.

 8. Now, head over to the Game Level scene (GameLevel.tscn) and

select the KinematicBody2D node (Player node). Next, open the

Node dock, and double-click the livescount() signal. This was

the custom signal that we created in the player script, Player.gd.

 9. In the Connect a Signal to a Method window that pops up, select

the CanvasLayer node, and click the Create button. This creates a

function called _on_KinematicBody2D_livescount() in the script

for the HUD (CanvasLayer.gd).

 10. In this script, add the following lines to the _on_

KinematicBody2D_livescount() function:

 lives = lives - 1

 _ready()

CHapter 9 Game GUI

285

 11. At the top of the script, declare a variable called lives, and

initialize it to 3.

 12. Next, modify the _ready() function, as shown next, which shows

the final script for the HUD. With these lines of code, we hide

one of the hearts on the HUD when the player loses one life (has

two lives left); then we hide two hearts when the player loses its

second life (has one life left). If the number of lives becomes 0,

then we load the Game Over screen.

extends CanvasLayer

var score = 0

var lives = 3

func _ready():

 $ScoreValue.text = String(score)

 if(lives == 2):

 $TextureRect3.hide()

 elif(lives == 1):

 $TextureRect3.hide()

 $TextureRect2.hide()

 elif(lives == 0):

 get_tree().change_scene("res://GameOver.tscn")

func _on_KinematicBody2D_gold_coin_collected ():

 score = score + 1

 _ready ()

func _on_KinematicBody2D_red_coin_collected ():

 score = score + 5

 _ready ()

func _on_KinematicBody2D_silver_coin_collected ():

 score = score + 10

 _ready ()

func _on_KinematicBody2D_livescount():

 lives = lives - 1

 __ready ()

CHapter 9 Game GUI

286

 13. Now, go to the enemy scene, Enemy.gd, and replace the contents

of the function _on_CollisionChecker_body_entered with the

line shown here:

func _on_CollisionChecker_body_entered(body):

 body.hit_enemy()

 Turning the Player Red on Getting Hurt
Now, we can make the player turn transparent red in color every time it runs into the

enemy and loses a life! We will turn it red in color as soon as it hits the enemy and then,

one second later, change its color back to normal. This gives the effect of the player

getting “hurt.”

 1. Open the Player scene Player.tscn, and add a child node called

Timer as a child of KinematicBody2D (root node).

 2. Next, select the Timer node in the Scene dock. You’ll see in the

Inspector dock that the default wait time is set to 1 second. We can

change this according to the time we want to wait before changing

the color back to normal after turning it red.

 3. Open the Node dock next to the Inspector dock. Double-click the

timeout() signal; then click the Connect button in the Connect a

Signal to a Method window.

 4. This creates a function called _on_Timer_timeout() in the Player

script, Player.gd. In this function, type the following line:

set_modulate(Color(1,1,1,1))

This line is used for changing the color of the player. It’s in the form

set_modulate(Color(R,G,B,A)), where R stands for Red, G for

Green, B for Blue, and A for the Alpha value. A value of 1 for all of

them means that all the colors are present equally; hence, there is no

change in color. We can change the color by modifying one or all of

the first three values and make it more transparent by modifying the

last (alpha) value.

CHapter 9 Game GUI

287

 5. Modify the function _hit_enemy, as shown here:

func hit_enemy():

 lives = lives – 1

 emit_signal("livescount")

 set_modulate(Color(1,0.3,0.3,0.6))

 $Timer.start()

By doing this, we are setting the R (Red value) to the maximum, while reducing the

G (Green) and B (Blue) color content, which gives our character a reddish hue whenever

it collides with the enemy. As shown in Figure 9-25, the first time the player collides with

the enemy, it loses one life and turns red in color. After a wait time of one second, the

player’s color goes back to normal.

Figure 9-25. The player turns red on colliding with the enemy

Once you design the Win screen of the game and save it as WinScreen.tscn, you can

replace GameOver.tscn with WinScreen.tscn in the function _on_Finish_Level_Area_

body_entered(). This will load Win screen once the player finishes the game level.

CHapter 9 Game GUI

288

TRY IT!

Creating the Game HUD

 1. Import HUD components such as custom fonts and icons to represent the player

health (such as hearts) into the project.

 2. Design a HUD to calculate and display the player’s score and health.

 3. Give the player four lives at the start of the game, and modify the player, enemy,

and HUD scripts to make the player lose one life on colliding with the enemy.

 4. make the player turn blue for two seconds after colliding with the enemy.

 Creating the Title Screen
We’ll create the title screen in a new scene and then add various UI nodes for the

background, buttons, text, and images. Let’s start with creating the background.

 Background
Follow these steps:

 1. Create a new scene by clicking the New Scene button near the

top of the 2D toolbar.

 2. In the Scene dock, click the User Interface option shown in

Figure 9-26 (a) to create a Control node as the root node of the

scene, as seen in Figure 9-26 (b). All the UI elements will be child

nodes of this Control node.

CHapter 9 Game GUI

289

Figure 9-26. (a) Creating a User Interface node as a root node, (b) creating a
Control node

 3. In the Scene dock, select the Control node and click the button

to add a child node to it. In the Create New Node window, search

for the ColorRect node and click the Create button. You can see

this in Figure 9-27.

CHapter 9 Game GUI

290

Figure 9-27. Creating a ColorRect node

As shown in Figure 9-28, a white rectangle with orange vertices is created on the 2D

workspace, with its top-left corner coinciding with the origin.

Figure 9-28. The ColorRect is created near the origin

 4. Select the ColorRect node in the Scene dock, and expand the

Margin property in the Inspector dock. Then, set the all the

margins (Left, Top, Right, and Bottom) to 0. Expand the Anchor

tab, and set the Bottom and Right Anchors settings to 1. This is

shown in Figure 9-29. This ensures that the ColorRect will always

cover the entire game window, no matter what size it is.

CHapter 9 Game GUI

291

Figure 9-29. Setting the margins and anchors of the ColorRect

 5. To change the color of the rectangle, click the white rectangle

next to the Color property in the Inspector dock, as shown in

Figure 9-29. A Color Picker window pops up where you can select

a particular color. Use the sliders to pick a color that you want to

set the Background to, such as the one shown in Figure 9-30.

CHapter 9 Game GUI

292

Figure 9-30. Picking a color for the background using the ColorPicker

Note You can also find a particular color in the Color picker window by typing in
its particular hex value or by adjusting the r (red), G (Green), and B (Blue) sliders.
the a, that is, “alpha” value slider, can be adjusted to change the transparency of
the color.

 6. Click anywhere in the workspace to exit the Color Picker.

CHapter 9 Game GUI

293

 Adding Text
Next, let’s add the title of our game.

 1. Previously, we saw how to add a UI component called

HBoxContainer for keeping our labels aligned with the game

window. Let’s add a similar component called CenterContainer

for aligning our title with the top of the screen. Select the Control

node and then add a CenterContainer node as its child. You can

either search for the CenterContainer in the Create New Node

window, or navigate to it under this path: Node ➤ CanvasItem ➤

Control ➤ Container ➤ CenterContainer.

 2. Now, select the CenterContainer in the Scene dock, click the green

Layout icon on the 2D toolbar, and select the Center Top option,

as shown in Figure 9-31.

Figure 9-31. Aligning the Center container to the center top of the ColorRect

 3. Next, expand the Anchor property of the CenterContainer, and set

the Left and Right Anchors to 0 and 1, respectively, and the Top

and Bottom anchors to 0, as shown in Figure 9-32.

CHapter 9 Game GUI

294

Figure 9-32. Setting the anchors of the ColorRect

 4. Select the CenterContainer node in the Scene dock and then

add a label as its child node. You can either search for the Label

node in the Create New Node window, or navigate to it under this

path: Node ➤ CanvasItem ➤ Control ➤ Label. Then, expand the

Custom Fonts tab, and click the small arrow next to the empty

Font property. Click Load, select the saved Font Resource from

the Open a File window, and click Open. If you haven’t saved any

font resource, you can create a new one (Select New DynamicFont

under the Font property of Custom Fonts). Then, click on the

DynamicFont, and drag and drop a font file (.ttf) from the

FileSystem dock into the Font Data field in the Inspector dock.

 5. Now, with the DynamicFont option selected (it appears blue),

expand the Settings tab and change the Size and Outline Color

properties. This changes how your title will appear on the top of

the screen. You can change the Font Color property under the

Custom Colors tab.

 6. Type the text you want the label to display, that is, the title of the

game, in the Text field of the Inspector dock (e.g., My Game). Your

title should now appear in the ColorRect, as shown in Figure 9-33.

CHapter 9 Game GUI

295

Note that the Display Window size has been set to 1280 x 800 in

Figure 9-33. You can change the window size by navigating to

Project ➤ Project Settings ➤ Display ➤ Window, then changing

the Width and Height properties under Size.

Figure 9-33. The game title is created in the workspace

 Adding a Panel
Next, let’s add a colored panel as a small background for the buttons.

 1. Select the Control node and add a Panel node as its child. You can

navigate to this path: Node ➤ CanvasItem ➤ Control ➤ Panel.

Now, with the Panel node selected in the Scene dock, click the

green Layout button on the 2D toolbar and choose the Bottom

Wide option, as shown in Figure 9-34.

CHapter 9 Game GUI

296

Figure 9-34. Setting the layout of the panel as Bottom Wide

 2. Then, expand the panel upward by pulling its top middle orange

vertex, until the panel covers the lower part of the screen. Next,

select the green Layout button again on the 2D toolbar, and select

the Keep Ratio option. This sets the anchors to all the vertices of

the panel, as shown in Figure 9-35. You can also manually set the

anchor values as shown.

CHapter 9 Game GUI

297

Figure 9-35. Expanding the panel upward

 3. To change the background color of the panel, expand the Custom

Styles tab in the Inspector dock, and then click the drop-down

menu next to the Panel property and select the New StyleBoxFlat

 option, as shown in Figure 9-36.

Figure 9-36. Creating a new custom style called StyleBoxFlat

 4. Next, click StyleBoxFlat that appears in the field next

to the Panel property. On doing so, the Preview, Bg (Background)

Color, Draw Center, and Corner Detail properties are visible, as

shown in Figure 9-37.

CHapter 9 Game GUI

298

Figure 9-37. The properties of the StyleBoxFlat custom-styled panel

 5. To change the background color of the panel, click the gray

rectangle next to the Bg Color property, which will open a

ColorPicker window. Pick a color in this window, and the color

will automatically be assigned to the panel in the workspace. For

example, as shown in the Figure 9-38, we’ve picked a dark green

color for the panel.

CHapter 9 Game GUI

299

Figure 9-38. Choosing a color for the panel

 6. If you want to give the panel rounded edges, expand the Corner

Radius property under Custom Styles, and adjust the values of Top

Left, Top Right, Bottom Right, and Bottom Left fields. The higher

the value, the more rounded the corresponding corner of the

panel will be.

CHapter 9 Game GUI

300

 Adding Buttons
Now, let’s add some buttons to the title screen!

 1. Select the Control node in the Scene dock, and then add a button

as its child node. See Figure 9-39.

Figure 9-39. Creating a Button node

 2. Now, select the Button node in the Scene dock, move it to the

center of the screen, and make it larger by dragging on its edges.

Then, click the green Layout button on the 2D toolbar and select

Keep Ratio. This makes the anchors appear on all the corners of

the button, as shown in Figure 9-40. You can enable Smart Snap

and Grid Snap options (on the toolbar) to make placement easier.

Figure 9-40. Positioning and resizing the button

CHapter 9 Game GUI

301

 3. Now, let’s assign a font for the text that the button will display.

With the Button node selected in the Scene dock, expand the

Custom Fonts property in the Inspector dock. Click the small

arrow in the field next to the Font property, and select the New

DynamicFont option.

 4. Now, click the DynamicFont option next to Font, as

shown in Figure 9-41. This opens up the Settings, Extra Spacing,

Font, and Resource properties.

 5. As shown in Figure 9-41, expand the Font and Settings properties.

In the “empty” field next to Font Data, drag and drop the imported

font, e.g., Kenny Future.ttf from the FileSystem dock. Now, the

text on our button will have this font. You can change various

properties of the font such as its Size, Outline Size (thickness

of colored-outline), and Outline Color from the Settings

menu shown.

Figure 9-41. Expanding the Settings and Font properties of the Custom Fonts tab

CHapter 9 Game GUI

302

 6. Type in the name of the first button, e.g., Play, in the Text property

in the inspector. This text will appear on the button in the

workspace. Make the text larger by increasing the Size property

under the Settings of the DynamicFont (under Custom Fonts). To

make the button transparent so that only the text is visible, turn on

the Flat property, as shown in Figure 9-42.

Figure 9-42. Typing Play in the Text field

 7. You can also give the text an outline color by clicking the white

rectangle next to the Outline Color property under the Settings

tab and then picking a color in the ColorPicker. Then, make the

colored outline visible by increasing the Outline Size property.

As shown in Figure 9-43, a light green outline with a size of 3 is

assigned for the Button text.

Figure 9-43. Setting a light-green outline color for the button’s font

 8. To create another button, we can just copy the first one. Select

the Button node in the Scene dock and then click Ctrl+D on

your keyboard. This copies and pastes a button on top of the

original Play button in the workspace. Let’s go ahead and repeat

CHapter 9 Game GUI

303

this three times for creating three more buttons. Then, arrange

them in a vertical line, as shown in Figure 9-44. Rename the four

button nodes in the Scene dock accordingly, such as PlayButton,

HowToPlayButton, Settings, and Quit.

Figure 9-44. Four buttons are created

 9. To change the text displayed by a button in the workspace,

select its corresponding node in the Scene dock, and then type

in the name in the Text field in the Inspector dock. As shown in

Figure 9-44, we’ve named the four buttons in the workspace as

Play, How to Play, Settings, and Quit. Note that you might need

to set the Keep Ratio property (under the Layout button on the

toolbar) again for each of the new buttons.

There are many properties that you can set for a button in the

Inspector. Here are some examples:

• Disabled: Turning it on makes the button unclickable.

• Toggle Mode: This makes the button change its state from pressed

to unpressed (and vice versa) every time it is clicked.

• Button Mask: This controls which mouse button (left, right,

middle) can be used to click the button.

CHapter 9 Game GUI

304

• Pressed: If this property is turned on, the button is considered to

be pressed down by default.

• Action Mode: This is used to determine when the button is

considered clicked, meaning during the release of the mouse

button or when it is just clicked (before its release).

 10. We can also make the font on the button change color every time

it is clicked or when we hover over it using our mouse. Click the

button in the workspace (or select its node in the Scene dock)

and then select the Font Color Hover and Font Color Pressed

properties under the Custom Colors tab to set each respective

property. To change the color, click the black rectangle and choose

a color. This is shown in Figure 9-45. We can do this for all of the

buttons by repeating this step for all of them.

Figure 9-45. Set the Font Color Hover and Font Color Pressed properties

Note the “Hover” or “pressed” color can be changed by clicking the black
rectangle next to the corresponding properties and then choosing the color in the
Colorpicker window.

 11. Save the scene (Ctrl+S or Ctrl+Shift+S), giving it a suitable name

such as TitleScreen.tscn.

 12. Now, play the scene by clicking the Play Scene button (F6). When

you hover over each button, the color of the font changes to the

one set for the Font Color Hover property, as shown in Figure 9-46.

CHapter 9 Game GUI

305

Figure 9-46. On hovering over the button, the Hover Color is visible

 Attaching a Script to a Button
If you click any of the buttons in the scene that’s playing, nothing happens! This is

because we need to tell Godot what to do when the button is pressed. For this, we need

to add a script to the button. Let’s start with the Play button.

 1. Select the Play button’s node in the Scene dock (PlayButton), and

click the icon to attach a script to it.

 2. In the Attach Node Script window, set Template to No Comments

to remove the default comments in the script, and then click the

Create button. As shown in Figure 9-47, the script is saved after

the node name—PlayButton.gd.

CHapter 9 Game GUI

306

Figure 9-47. Creating a script for the Play button called PlayButton.gd

 3. Once the script opens, we can delete func _ready(), and pass

since it is not needed.

 4. Now, in the Scene dock, select the PlayButton node and click the

Node dock next to the Inspector dock. Double-click the pressed()

signal, and in the Connect a Signal to a Method window, click

the Connect button. You can see this in Figure 9-48. This

creates a function called _on_PlayButton_pressed in the script

PlayButton.gd.

CHapter 9 Game GUI

307

Figure 9-48. Connecting the pressed() signal to the script PlayButton.gd

 5. In this function, replace the “pass” with the following line:

get_tree().change_scene("res://GameLevel.tscn")

The code should look as follows:

extends Button

func _on_PlayButton_pressed():

 get_tree().change_scene("res://GameLevel.tscn")

This will ensure that when the play button is clicked, the main game level,

GameLevel.tscn, will be loaded.

 6. We can implement the scripts for the other buttons after

connecting the pressed() signal to them in a similar way. For

example, if we have a game scene designed for “How To Play”

called HowToPlay.tscn, we can connect the pressed() signal to

the HowToPlayButton node’s script. Then, in this button’s script,

we can type in the following line of code:

CHapter 9 Game GUI

308

extends Button

func _on_HowToPlayButton_pressed():

 get_tree().change_scene("res://GameLevel.tscn")

 7. Similarly, after connecting the QuitButton node to the pressed()

signal, a function called _on_QuitButton_pressed is created

in the script QuitButton.gd. Since we want to exit the game on

pressing the Quit button on the title screen, we can type in the

following line of code in the _on_QuitButton_pressed function:

get_tree().quit()

The script for the Quit button should look like the one shown here:

extends Button

func _on_QuitButton_pressed():

 get_tree().quit()

As shown in Figure 9-49, we have our title screen!

Figure 9-49. The main title screen

CHapter 9 Game GUI

309

Now that we have our title screen, we need to set this as the main scene in the game

so that this scene is the first one that the player sees once he starts the game. To do that,

right-click TitleScreen.tscn in the FileSystem dock, and select the

Set As Main Scene option.

 Adding an Image to the Title Screen
We can enhance our title screen further by adding images to it! Let’s see how to do that.

 1. Select the Control node in the Scene dock and click the button

to add a child node. Search for the TextureRect node in the Create

New Node window, and click the Create button.

 2. The TextureRect is created on the workspace near the origin. We

can assign an image to it by selecting the TextureRect node in the

Scene dock and then dragging and dropping an image from the

FileSystem dock into the Texture field in the Inspector dock.

 3. An example of a title screen with the images is shown in

Figure 9-50.

Figure 9-50. Final title screen with images

CHapter 9 Game GUI

310

 4. Make sure to set the correct anchors for each image, e.g., by

setting the Keep Ratio layout option that we saw earlier.

 The Game Over Screen
Previously, we created an empty scene called GameOver.tscn, with the Control node as a

placeholder. We can design the Game Over screen in this scene, in the same way that we

designed the Main Title Screen. Figure 9-51 shows an example of a Game Over screen.

Figure 9-51. The Game Over screen

TRY IT!

Designing the Game GUI

 1. Design the title screen and Game Over screen with the help of a Colorrect,

Buttons, panels, and Images.

 2. Create various buttons for playing and quitting the game, accessing the

Settings page, How to play Screen, etc.

CHapter 9 Game GUI

311

 Adding Music to the Game
Godot supports three types of music file formats: .wav, .ogg, and .mp3. We can

download music and sound effect files from online sources in any of these three formats.

To import the music/sound files into the Godot project, you can drag and drop it into the

FileSystem dock from any file on your computer. Now, let’s add music to the title screen.

 1. Open the title screen scene, TitleScreen.tscn.

 2. Select the Control node in the Scene dock and click the button

to create a child node. Search for AudioStreamPlayer in the Create

New Node window and click the Create button. You can see this in

Figure 9-52.

Figure 9-52. Creating an AudioStreamPlayer node

The AudioStreamPlayer gets added to the node hierarchy as a child of the

Control node.

CHapter 9 Game GUI

312

 3. With the AudioStreamPlayer node selected in the Scene dock,

drag and drop the music file (.ogg file) from the FileSystem dock

into the Stream property in the Inspector dock.

 4. Next, set the AutoPlay property to On, as shown in Figure 9-53.

Now, when you play this scene, the music will automatically play

for the title screen on playing the game scene. To stop playing the

audio continously in a loop, select the file in the FileSystem dock,

open the Import dock next to the Scene dock, uncheck Loop, and

click on Reimport.

Figure 9-53. Dragging and dropping the music file into the Stream property in the
Inspector dock

Note the volume and pitch of the music can be changed by adjusting the Volume
Db and pitch Scale properties in the Inspector dock.

CHapter 9 Game GUI

313

 Adding Sound Effects
Sound effects can enhance the game, making it more delightful to play! We can play

sound effects during every time the player jumps, collects a coin, defeats the enemy,

finishes the level, or loses the game.

Let’s see how to add sound effects for jumping and collecting a coin to our game.

 Jumping
Let’s add a sound effect that plays every time the player jumps.

 1. Open the player scene (Player.tscn) by double-clicking it in the

FileSystem dock.

 2. Select the root node of the scene (KinematicBody2D) and click the

 button to add a child node. Search for AudioStreamPlayer in

the Create New Node window, and click the Create button.

 3. The AudioStreamPlayer node is created as a child of

KinematicBody2D, as shown in Figure 9-54.

Figure 9-54. The AudioStreamPlayer is created as a child of KinematicBody2D

 4. Select the AudioStreamPlayer node in the Scene dock, and then

drag and drop the sound effect from the FileSystem into the Stream

property in the Inspector dock. Since we don’t want the sound to

play continuously on a loop, let’s disable looping. Select the sound

in the FileSystem dock, then under the Import Settings next to the

Scene dock, uncheck Loop and click the Reimport button.

CHapter 9 Game GUI

314

 5. Now, open the Payer script (Player.gd), and, within the Input.

is_action_just_pressed("Jump") and is_on_floor()

statement, after the line $AnimatedSprite.play("jump"), type in

the following line:

$AudioStreamPlayer.play()

Your _physics_process(_delta) function should look like the one shown here:

func _physics_process(_delta):

 if Input.is_action_just_pressed("jump") and is_on_floor():

 velocity.y = -1000

 $AnimatedSprite.play("jump")

 $AudioStreamPlayer.play()

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -300

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = true

 if Input.is_action_pressed("right_arrow"):

 velocity.x = 300

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = false

 else:

 $AnimatedSprite.play("idle")

 if not is_on_floor_():

 $AnimatedSprite.play("jump")

 Coin Collected
Follow these steps:

 1. Open the scene of one of the coins, e.g., Gold_coin.tscn. In the

Scene dock, select the root node (Gold coin), and click the

button to add a child node. Search for AudioStreamPlayer in the

Create New Node window, and click the Create button.

CHapter 9 Game GUI

315

 2. The AudioStreamPlayer is then created as a child of the root node

and appears in the Scene dock. Double-click it, and rename it to

CoinCollectSound, as shown in Figure 9-55.

Figure 9-55. Renaming the AudioStreamPlayer to CoinCollectSound

Now, with the CoinCollectSound node selected in the Scene dock, drag and drop the

sound effect (e.g., CoinCollect.ogg) into the Stream property in the Inspector dock.

 3. Next, open the script for the Gold Coin (Gold_coin.gd) by double-

clicking it in the FileSystem dock.

 4. In the function _on_Gold_coin_body_entered, add the

following line:

 $CoinCollectSound.play()

Your code should look like the one shown here:

extends Area2D

func _ready():

 $AnimationPlayer.play("Rotate_Coin")

func _on_Gold_coin_body_entered(body):

 $CoinCollectSound.play()

 body.score_count_gold()

 queue_free()

CHapter 9 Game GUI

316

But now if you play the game scene, you’ll notice that the sound doesn’t play when

you collect the Gold coin! This is because the line queue_free() deletes the coin object

before you can play the sound!

We can fix this by adding a short animation to the coin before deleting it, which gives

the sound some time to play. We’ll make the coin move up and down, that is, effectively

“bounce” in position for a short while before disappearing when the player collects it.

Let’s see how to do that.

 1. In the same scene (Gold_coin.tscn), select the root node (Gold

coin), and click the button to add a child node. In the Create

New Node window, search for AnimationPlayer and click the

Create button. This gets added to the node hierarchy as

AnimationPlayer2, as shown in Figure 9-56.

Figure 9-56. Creating a second AnimationPlayer for the coin bounce animation

 2. When you click the AnimationPlayer2 node in the Scene dock, the

Animation panel should open up at the bottom of the interface.

Click the Animation button as shown in the Figure 9-57, and select

the New option to create a new animation track.

CHapter 9 Game GUI

317

Figure 9-57. Clicking the Animation button and selecting the New option for
creating a new track

 3. In the Create New Animation window that pops up, enter the

animation name such as coin_bounce, and click the OK button.

 4. Change the timescale next to the icon to 1 second, and make

sure that the blue marker is at the 0-second position, as shown in

Figure 9-58.

Figure 9-58. Changing the timescale to 1 second

 5. Now, since we will be creating an animation for the coin’s sprite,

select the Sprite node in the Scene dock. This will show all the

properties in the Inspector docks that we can animate. For making

the coin bounce, we will animate its Position property.

 6. Under the Transform tab in the Inspector dock, click the key

icon next to the Position x and y values.

CHapter 9 Game GUI

318

 7. A window pops up asking you for confirmation to create a new

track for the Position property. Click the Create button. A key is

inserted at the 0th second position on the timeline, as shown in

Figure 9-59.

Figure 9-59. The key is inserted at the 0 seconds position in the timeline

 8. Now, move the blue cursor to the 0.5 seconds position by clicking

the line near 0.5 on the timeline, as shown in Figure 9-60.

Figure 9-60. Moving the blue cursor to the 0.5-second position

 9. Select the Sprite node in the Scene dock, and change the y value

of the Position property to -15, to move the coin’s sprite slightly

upward in the workspace. Then, click the key icon next to the

Position property to add another key at the 0.5 second mark on

the timeline, as shown in Figure 9-61.

Figure 9-61. Adding another key with a different y position at the 0.5-second
position

CHapter 9 Game GUI

319

 10. Now, move the blue marker to the 1-second mark on the timeline.

Select the Sprite node in the Scene dock again, and this time,

change the y value of the Property back to 0. Then, click the key

icon to add this position as a key to the timeline, as shown in

Figure 9-62.

Figure 9-62. Adding a third key at the 1-second position

We now have our coin bounce animation, where the coin bobs up and down. Next,

we need to modify the coin’s script (Gold_coin.gd) for playing this animation.

 11. Open Gold_coin.gd, and delete the line queue_free() from the

function _on_Gold_coin_body_entered. In the same function,

type in the following line:

$AnimationPlayer2.play("coin_bounce")

Your script should look like the one shown here:

extends Area2D

func _ready():

 $AnimationPlayer.play("Rotate_Coin")

func _on_Gold_coin_body_entered(body):

 $CoinCollectedSound.play()

 $AnimationPlayer.play("coin_bounce")

 body.score_count_gold()

Now, this coin animation will play every time the player collects a

Gold coin. Since we want the coin to disappear after the bounce

animation stops playing, we can use a signal to do that.

CHapter 9 Game GUI

320

 12. Select the AnimationPlayer2 node in the Scene dock and then

open the Node dock next to the Inspector dock. Double-click the

animation_finished signal, and a Connect a Signal to a Method

window will pop up, as shown in Figure 9-63.

Figure 9-63. Connecting the animation_finished signal to the Gold_coin.gd

 13. Click the Connect button, and a new function is created in the

Gold coin’s script (Gold_coin.gd) called _on_AnimationPlayer2_

animation_finished. In this function, replace the “pass” with

queue_free(). Your script should look like the one shown here:

(We can remove the custom collected_coin signal from the script)

extends Area2D

func _ready():

 $AnimationPlayer.play("Rotate_Coin")

func _on_Gold_coin_body_entered(body):

 $CoinCollectSound.play()

CHapter 9 Game GUI

321

 $AnimationPlayer2.play("coin_bounce")

 body.score_count_gold()

func_on_AnimationPlayer2_animation_finished(coin_bounce):

 queue_free()

If you now play the main game scene by clicking the button, every time the player

collects a Gold coin, the coin will bounce up and down for 1 second and then disappear.

At the same time, we’ll hear the CoinCollect sound effect. We can apply the same

procedure for other coins and collectibles in our game (e.g., Silver coin and Red coin).

There’s still one issue—if the player goes back into the coin when the coin animation

is playing, the player can collect the same coin multiple times! We can solve this in many

ways—one way is to make the coin animation last for a very short time (by changing the

animation duration).

TRY IT!

Adding Music and Sound Effects

 1. Import music and sound effect files into your project.

 2. add music to the title screen and game level.

 3. add sound effects for jumping and collecting a coin.

 Key Takeaways
In this chapter, we used Godot’s GUI components to design various game screens,

such as the main title screen and the Game Over screen. We saw how to add a colored

background, buttons, panels, and images to a scene, and we created text with custom

fonts. With the help of imported fonts and a heart image/icon, we created a HUD to

calculate and display the player’s score, as well as the remaining lives after enemy

collision. Further, we saw how to add music and sound effects to different scenes in

the game.

CHapter 9 Game GUI

323
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2_10

CHAPTER 10

Publishing Your Game

 This chapter wraps up the beginning of our game development journey with
Godot. We’ll learn about key features that can enhance our game, such as a global
variable system for keeping track of the player score and lives, a fireball system for
shooting enemies, and touchscreen buttons for mobile games. We’ll walk through
the steps for exporting our game for three platforms: mobile (Android), PC
(Windows), and browser (HTML5). Finally, you will look at some exciting ways to
publish and monetize your game.

You finally did it! You created your very first 2D platformer in Godot! You’ve learned

so much, including animating the character, designing the game world using TileMaps,

adding enemies that can hurt the player, and adding different coins that the player

can collect. We created a title screen and a heads-up display (HUD) for our game that

calculated and displayed the total score as well as the number of lives the player has left.

We also made the game even more fun to play by adding music and cool sound effects!

Now it’s time for you to share your game for the world to see. We’ll soon explore the

techniques for exporting your game to various platforms, such as PC (Windows), mobile

(Android), and browser (HTML).

But first, let’s look at some possible ways you can upgrade your game to enhance the

player’s experience.

 Game Enhancements
The process of designing and developing a game is iterative—you can always find

something to fix or improve! That’s the reason why many developers often release

updates and patches even after the game comes out in the market. Let’s see some

updates we can make for our game.

https://doi.org/10.1007/978-1-4842-7455-2_10#DOI

324

 Creating Global Variables
In the previous chapters, we designed a single level of our platformer. You saw how

to reload the current game level or go to another game screen (such as a Game Over

screen) if the player fell off a cliff or reached the end of the level. But in a real platformer,

we might have multiple levels, and we will want to keep track of player variables such

as the total score and the number of lives left throughout the game. In such a case, the

current values of the score and lives should be carried over from one level to the next (or

updated accordingly during the reload of the current game level).

This can be achieved through the concept of singletons and autoloads. Since we

want the variables score and lives to be common across all the scenes of the game, we

can create a single global script for storing and accessing their values throughout the

game. Let’s see how to implement a global variable system.

 1. Right-click near the blank space at the bottom of your FileSystem dock

and click the New Script option. In the Create Script window,

name this script Playervars.gd, and then click the Create button.

 2. Double-click on the script in the FileSystem dock. Then, modify

the script so that it looks like the one shown here:

extends Node

var score = 0

var lives = 3

We have declared two variables called score and lives and initialized them to 0 and

3, respectively. Here, score represents the player’s total score, and lives represents the

number of lives left. See Figure 10-1.

Figure 10-1. Creating a new script called Playervars.gd

CHAPTer 10 PubLisHinG Your GAMe

325

 3. Click the File tab shown in Figure 10-1, and click Save (keyboard

shortcut Ctrl+Alt+S).

 4. Now, navigate to Project ➤ Project Settings from the toolbar at

the top of the interface, and open the AutoLoad tab shown in

Figure 10-2.

 5. Click the file icon next to the Path: field, and select

Playervars.gd in the Open a File window. As shown in

Figure 10-2, the path to the script gets added to the Path field, and

its name, Playervars, is assigned to the Node Name field.

Figure 10-2. Autoloading the Playervars.gd script

 6. Click the Add button next to the Node Name field. Your Project

Settings should now look like Figure 10-3. Make sure that under

the Singleton field, the Enable field is checked. We’ve created a

Singleton called Playervars, which will be “autoloaded” for every

scene in the game. This means that our Playervars.gd script can

be accessed from any scene in the project using the node name

Playervars. Close the Project Settings.

CHAPTer 10 PubLisHinG Your GAMe

326

Figure 10-3. Adding Playervars to the AutoLoad list and enabling Singleton

 7. Now, open CanvasLayer.gd, the script we created for the HUD in

the main game scene. In this script, delete the declarations for the

score and lives variables at the top.

 8. In the rest of the script, replace score with Playervars.score,

and replace lives with Playervars.lives. This means we will

be using and updating the scores and lives variables declared

in the Playervars.gd script, instead of using local declarations in

the CanvasLayer.gd script. Note: We need to replace lives with

Playervars.lives and replace score with Playervars.score

throughout the entire project!

 9. Also, add a $TextureRect3.hide() line inside the elif

(Playervars.lives == 1) statement in the _ready() function.

This will ensure that when the player has only one life left, that is,

when the player loses two lives, only the leftmost heart icon on the

HUD (TextureRect1) is visible, while the other two heart icons are

hidden, as shown in Figure 10-4 (b).

Figure 10-4. (a) Three lives left, (b) one life left

CHAPTer 10 PubLisHinG Your GAMe

327

 10. Your CanvasLayer.gd script should now look like the one

shown here:

extends CanvasLayer

func _ready():

 ScoreValue.text = String(Playervars.score)

 if(Playervars.lives == 2):

 $TextureRect3.hide()

 elif(Playervars.lives == 1):

 $TextureRect3.hide()

 $TextureRect2.hide()

 elif(Playervars.lives == 0):

 get_tree().change_scene("res://GameOver.tscn")

func _on_KinematicBody2D_gold_coin_collected():

 Playervars.score = Playervars.score + 1

 _ready()

func _on_KinematicBody2D_red_coin_collected():

 Playervars.score = Playervars.score + 5

 _ready()

func _on_KinematicBody2D_silver_coin_collected():

 Playervars.score = Playervars.score + 10

 _ready()

func _on_KinematicBody2D_livescount():

 Playervars.lives = Playervars.lives - 1

 _ready()

Note if in your scene dock ScoreValue is a child node of HBoxContainer,
then $ScoreValue.text will be replaced with $HBoxContainer/ScoreValue
in the first line of the _ready() function.

CHAPTer 10 PubLisHinG Your GAMe

328

 11. Now, open the player script Player.gd, and modify the _on_Fall_

Area_body_entered() function, as shown here:

func _on_Fall_Area_body_entered(body):

 Playervars.lives = Playervars.lives - 1

 get_tree().change_scene("res://GameLevel.tscn")

Note We don’t need to calculate Playervars.lives in the hit_enemy()
function of the player, since we are already updating it in the Canvas.gd script
using our custom livescount signal.

Now, whenever you go to another game level and the scene changes or when the

current scene reloads after falling off a cliff, the score and lives properties will be

calculated throughout the game! Also, if the player’s lives become 0, the CanvasLayer.gd

script will load the Game Over screen.

 Defeating the Monsters
So far, in our game, we don’t have a way for our player to defeat the enemy. We can

implement a system where the player can shoot fireballs at the enemy, making it

disappear every time the fireball hits it. Let’s take a look at the steps involved.

 1. Create a new scene called Fireball, and create an Area2D node

as the root node (rename it to Fireball). Add a sprite and a

CollisionShape2D as child nodes, as shown in Figure 10-5. Select

the CollisonShape2D and assign it a rectangular collision shape in

the Inspector dock.

Figure 10-5. Scene dock of the Fireball.tscn

CHAPTer 10 PubLisHinG Your GAMe

329

 2. Select the Sprite node, and drag and drop the image you want to

use for the fireball into the Texture field in the Inspector dock.

Then, make the sprite as well as the CollisionShape2D larger. As

shown in Figure 10-6, we’ve loaded the same heart image in the

Texture field that we used when creating the game HUD in the

previous chapter. (You can import another image into your Godot

project and use that as the texture instead.)

Figure 10-6. Loading the heart image into the Texture field

 3. Now, select the Fireball (root) node and click the bind icon

next to the lock icon on the 2D toolbar to make its children

nonselectable. Then, with the Fireball node selected, click the

icon in the Scene dock to attach a script. Click the Create button in

the Attach Node Script window, and a script called Fireball.gd is

created and opened.

 4. Replace the contents of the Fireball.gd script with the code

shown here:

extends Area2D

func _physics_process(_delta):

 position.x = position.x + 1000 * (_delta)

 5. This code will continuously increase the x position of the fireball

by 1,000 units, effectively moving it across the screen from left

to right. Increasing this value will move the fireball faster, while

decreasing will make it move slower. Note that we are multiplying

this increment value by the delta value to prevent changes in the

gameplay in case your game’s FPS is changed.

CHAPTer 10 PubLisHinG Your GAMe

330

Now, we need to make the fireball as well as the enemy disappear every time the

fireball collides with it.

 6. Select the Fireball node (root node), and open the Node dock

next to the Inspector dock. Double-click the area_entered signal;

then click Connect in the Connect a Signal to a Method window.

This creates a function called _on_Fireball_area_entered() in

the Fireball.gd script. Replace the pass with queue_free(), as

shown here:

func _on_Fireball_area_entered(area):

 queue_free()

 7. Now open the Input Map tab of the Project Settings. Add an

action called shoot, and assign a keyboard key to it, such as the F

keyboard key, as shown in Figure 10-7. This will be the key that the

player has to press to shoot a fireball. Close the Project Settings.

Figure 10-7. Adding a shoot action keyboard key in the input map

 8. Open the player scene (Player.tscn), and then add a Position2D

as a child node of the player (KinematicBody2D), as shown in

Figure 10-8.

CHAPTer 10 PubLisHinG Your GAMe

331

Figure 10-8. Adding a Position2D node as a child of the KinematicBody2D

 9. Select the Position2D node in the Scene dock, and adjust the

Position2D in the workspace so that it is slightly in front of

the player by changing the x and y position properties on the

Transform tab in the Inspector dock, as shown in Figure 10-9.

This is where all the fireballs will come from when the player

shoots them.

Figure 10-9. Adjusting the Position property of Position2D

CHAPTer 10 PubLisHinG Your GAMe

332

 10. Now open the Player script (Player.gd), and modify it for

preloading Fireball.tscn, as shown here:

extends KinematicBody2D

var velocity = Vector2(0,0)

var gravity = 2000

signal gold_coin_collected

signal red_coin_collected

signal silver_coin_collected

signal livescount

const FIREBALL = preload("res://Fireball.tscn")

 11. Modify the _physics_process(_delta) function, as shown

next. Whenever the keyboard key for the shoot function (F key)

is pressed, an instance of the Fireball scene will be created and

added as a child of the Player node. The position of the fireball

is also set to the position we defined for the Position2D node in

Player.tscn.

func _physics_process(_delta):

 if Input.is_action_just_pressed("jump") and is_on_floor():

 velocity.y= -1000

 $AnimatedSprite.play("jump")

 $AudioStreamPlayer.play()

 if Input.is_action_pressed("left_arrow"):

 velocity.x = -300

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = true

 elif Input.is_action_pressed("right_arrow"):

 velocity.x = 300

 $AnimatedSprite.play("run")

 $AnimatedSprite.flip_h = false

 else:

 $AnimatedSprite.play("idle")

CHAPTer 10 PubLisHinG Your GAMe

333

 if not is_on_floor():

 $AnimatedSprite.play("jump")

 if Input.is_action_just_pressed("shoot"):

 var fireball = FIREBALL.instance()

 get_parent().add_child(fireball)

 fireball.position = $Position2D.global_position

 velocity.y = velocity.y + gravity *(_delta)

 move_and_slide(velocity, Vector2.UP)

 velocity.x = lerp(velocity.x,0,0.1)

 12. Open Enemy.tscn. Select the root node Enemy

(KinematicBody2D) and add an Area2D as a child to it (rename

it FireballCollisionChecker). Add a CollisionShape2D as a

child node of FireballCollisionChecker, and assign it a circular

collision shape in the Inspector dock (Shape property). Your node

hierarchy should look like Figure 10-10.

Figure 10-10. Adding an Area2D node (FireballCollisionChecker) as a child of the
Enemy node

CHAPTer 10 PubLisHinG Your GAMe

334

 13. Now, select the CollisionShape2D node (child node of

FireballCollisionChecker node) in the Scene dock. Then, adjust

the size of the circular collision shape in the workspace and

its position by changing the x and y Position properties on the

Transform tab in the Inspector dock. Move it as close to the front

part of the enemy as possible. This is shown in Figure 10-11.

Figure 10-11. Adjusting the size and position of the CollisionShape2D

 14. When the fireball enters this circular collision shape, the enemy

will be “hit.” We will use a signal to detect this and to delete the

enemy node subsequently. With the FireballCollisionChecker

selected in the Scene dock, open the Node dock next to the

Inspector dock, and double-click the area_entered() signal. Click

the Connect button in the Connect a Signal to a Method window

(where the Enemy node is selected).

 15. A function called _on_FireballCollisionChecker_area_

entered() is created in the Enemy script, Enemy.gd. Replace the

pass in this function with queue_free, as shown here:

func _on_FireballCollisionChecker_area_entered(area):

 queue_free()

This implies that whenever an area (the fireball) enters the FireballCollisionChecker’s

CollisionShape2D node, it will signal the Enemy script to delete the Enemy node. But one

important step still remains- setting up the correct collision masks and collision layers so

that only the fireball can collide with the FireballCollisionChecker in the game.

CHAPTer 10 PubLisHinG Your GAMe

335

 16. Open the Project Settings (Project ➤ Project Settings), and

navigate to the 2d Physics settings under the Layer Names tab. As

shown in Figure 10-12, we had assigned different collision layers

(1 to 6) to various collidable objects in our game. In the next

empty layer, e.g. Layer 7, enter Fireball and then close the Project

Settings. Click Save (Ctrl+S).

Figure 10-12. Adding a collision layer for the Fireball

 17. In Enemy.tscn, select the FireballCollisionChecker node in the

Scene dock and then expand the Collision tab in the Inspector

dock. Now, click the three dots (…) next to the Layer property and

unselect the Player layer, as shown in Figure 10-13 (a). We don’t

need to set a layer for the FireballCollisionChecker as long as we

set its mask to monitor collisions with the fireball. For the Mask

property, unselect the Player layer and select the Fireball layer, as

shown in Figure 10-13 (b).

CHAPTer 10 PubLisHinG Your GAMe

336

Figure 10-13. (a) Assigning the fireball mask for the FireballCollisionChecker,
(b) assigning the fireball layer and mask for the Fireball

 18. Now, we have to set the Layer and Mask properties for the fireball.

Open the Fireball.tscn, and select the root node fireball.

Expand the Collision tab in the Inspector dock; then for the Layer

property, unselect the Player layer and set the Fireball layer,

as shown in Figure 10-13 (b). Next, do the same for the Mask

property, as shown in Figure 10-13 (b). It’s important that the

FireballCollisionChecker and Fireball are on different layers so

that two fireballs won’t collide with and delete each other.

That’s it! Now when you play the game, you’ll be able to shoot the enemy by pressing

the F key button, which will make the enemy disappear.

 Adding Touchscreen Buttons
Before you export your game to mobile, you can add touchscreen buttons to your game

for controlling the player’s left, right, and jump motions. This can be done in a few

simple steps.

CHAPTer 10 PubLisHinG Your GAMe

337

 1. Download images of the buttons you want to use, and import

them into your project. We’ll be using the Up, Left, and Right

Buttons from an asset pack designed by Mihika Dhule. (You can

download it here: https://mihikad.itch.io/collectibles-

buttons.)

 2. Open the Game Level scene GameLevel.tscn, and select the

CanvasLayer node that we created as the parent node for the

Score Label and Health Heart icons.

 3. Add a CenterContainer node as a child of CanvasLayer, and set its

Layout option as Bottom Wide (Under the green Layout button on

the 2D toolbar). Next, expand it so that it fills the bottom portion

of the game screen where you want to place the buttons, as shown

in Figure 10-14.

Figure 10-14. Expand the CenterContainer to fill the bottom portion of the
game screen

 4. Next, add three TouchScreenButton nodes as children of the

CenterContainer node, as shown in Figure 10-15 (a). Rename

them as Left, Right, and Jump, respectively, as shown in

Figure 10-15 (b).

CHAPTer 10 PubLisHinG Your GAMe

https://mihikad.itch.io/collectibles-buttons
https://mihikad.itch.io/collectibles-buttons

338

Figure 10-15. (a) Adding TouchScreenButton nodes as children of CenterContainer,
(b) renaming the TouchScreenButton nodes to Left, Right, and Jump

 5. Now, select one of these TouchScreenButton nodes in the Scene

dock, and then drag and drop its corresponding image from the

FileSystem dock into the Normal property in the Inspector dock.

For example, as shown in Figure 10-16, we’ve assigned the image

of the Left Arrow button to the Normal field of the Left node.

Figure 10-16. Typing in left_arrow in the Action property

CHAPTer 10 PubLisHinG Your GAMe

339

 6. In the Action property of the Left TouchScreenButton button, type

in left_arrow, as shown in Figure 10-16. Similarly, type in

right_arrow for the Right TouchScreenButton button, and jump

for the Jump TouchScreenButton button. Recall that we had added

these actions for the keyboard key presses on the Input Map tab of

the Project Settings.

 7. In the Project Settings, under the General tab, open the Pointing

properties under Input Devices. Make sure that the Emulate

Mouse From Touch option is enabled, as shown in Figure 10-17.

This simulates a mouse click every time you touch or tap on the

screen on your phone.

Figure 10-17. Make sure the Emulate Mouse from Touch option is enabled

Note You can optionally also choose the emulate Touch From Mouse option as
well, if you want to simulate a touch or a tap on the screen, every time you click
the mouse button on your computer screen.

 8. Resize, position, and place these buttons on the CenterContainer

in the workspace where you want them to appear in the game.

 9. That’s it, your touchscreen buttons are ready! When you play the

game, you can see the buttons appear on the bottom portion of

the game, as shown in Figure 10-18.

CHAPTer 10 PubLisHinG Your GAMe

340

Figure 10-18. Touchscreen buttons added to the game screen

Note The scale and position of the button may change according to your screen
resolution.

TRY IT!

Upgrading Your Game

 1. Create a global script called Globalvars.gd, and add it to the AutoLoads list.

 2. Declare two variables, called score and lives in this script, and initialize

them to 0 and 4, respectively. Modify the HuD (CanvasLayer) to initially display

five heart icons.

 3. Modify the score and lives variables in the Player and enemy scripts to access

the variables declared in Globalvars.gd instead.

 4. Create a fireball system to defeat the enemy.

CHAPTer 10 PubLisHinG Your GAMe

341

 Exporting Your Game
Once you’re happy with your project, you can export your game to (make it playable on)

various platforms. But first, you need to install Godot’s export templates. This can be

done via the interface itself.

 Downloading Export Templates
Follow these steps:

 1. Navigate to Editor ➤ Manage Export Templates at the top left of

the interface, as shown in Figure 10-19.

Figure 10-19. Click the Manage Export Templates option

 2. In the Export Template Manager, you’ll see that your export

templates are missing, as shown in Figure 10-20 (a). Once

you click Download, you can select a mirror link that lets you

download the required templates from the Godot website into

your project, as shown in Figure 10-20 (b). Once you click this link,

the downloading will start, as shown in Figure 10-21 (a).

CHAPTer 10 PubLisHinG Your GAMe

342

Figure 10-20. (a) Export templates are missing, (b) clicking the mirror link to
download the templates from the Godot website

 3. Once the Export templates have been downloaded, you should

see Figure 10-21 (b).

Figure 10-21. (a) The download of the export templates starts. (b) The export
templates are successfully downloaded and installed

Now you’re ready to start exporting your game to different

platforms!

CHAPTer 10 PubLisHinG Your GAMe

343

 Exporting to PC (Windows)
Follow these steps:

 1. From the toolbar at the top of the interface, navigate to Project ➤

Export, as shown in Figure 10-22.

Figure 10-22. Opening the Export window

 2. Click the Add button on the Export window that opens up, as

shown in Figure 10-23. Click the Windows Desktop icon.

CHAPTer 10 PubLisHinG Your GAMe

344

Figure 10-23. Adding a Windows Desktop export preset

 3. The Windows Desktop option gets loaded into the Presets list. As

shown in Figure 10-24, you can change various features related to

this preset. Make sure to keep the Runnable button on, and then

click the Export Project button.

CHAPTer 10 PubLisHinG Your GAMe

345

Figure 10-24. The Windows Desktop preset is added

 4. Once you do that, a Save a File window opens. Navigate to the

path where you want to save your exported game, and give it a

name in the File field, as shown in Figure 10-25. Once you click

the Save button, your game gets successfully exported to your

specified path. Note that the Export With Debug option should be

disabled when you export your game for the final release.

CHAPTer 10 PubLisHinG Your GAMe

346

Figure 10-25. Specifying the name and path of the export file

 5. Navigate to the path where the game is saved on your computer,

and double-click the game to start playing it on Windows! See

Figure 10-26.

Figure 10-26. Author’s depiction of the game being played on the PC

CHAPTer 10 PubLisHinG Your GAMe

347

 Exporting to Mobile (Android)
We can export to Android by creating an Android Application Package (APK) file for our

game. For doing so, we need to first ensure that we have the correct setup files that are

required, as given in the official Godot documentation.1 Moreover, the process is slightly

different in case of exporting with Godot version 3.2.3 or Godot version 3.3 or above.

Let’s look at the Export process for Godot 3.2.3.

 1. Download and install Android Studio version 1.4 or later, and run

it. You can download the latest version here: https://developer.

android.com/studio.

 2. Ensure that the packages given here are installed:

• Android SDK Platform-Tools version 30.0.5 or later

• Android SDK Build-Tools version 30.0.3

• Android SDK Platform 29

• Android SDK Command-line Tools (latest)

• CMake version 3.10.2.4988404

• NDK version 21.4.7075529

 3. Download and install a Java Development Kit (JDK). Godot

recommends using OpenJDK 8, which can be downloaded from

https://adoptopenjdk.net/. You can also choose to download

and install the latest version from the same site, jdk-16.0.2.

 4. Create a debug.keystore key:

• Run the Command Prompt as Administrator.

• Change the directory (cd .. to go back one level) to the bin

directory of the JDK. For example, if you downloaded and

installed jdk-16.0.2, navigate to C:\Program Files\Java\

jdk-16.0.2\bin at the CMD prompt.

• Copy and paste the following command, and then press Enter:

CHAPTer 10 PubLisHinG Your GAMe

https://developer.android.com/studio
https://developer.android.com/studio
https://adoptopenjdk.net/

348

• keytool -keyalg RSA -genkeypair -alias androiddebugkey -keypass an

droid -keystore debug.keystore -storepass android -dname

“CN=Android Debug,O=Android,C=US” -validity 9999 -deststoretype

pkcs12

• A file called debug.keystore should be created in your bin folder

(C:\Program Files\Java\jdk-16.0.2\bin\debug.keystore).

 5. In the Godot interface, navigate to Editor ➤ Editor Settings (at the

top left), and open the Android settings found under Export on the

General tab. As shown in Figure 10-27, enter the path to the Debug

Keystore (same as in the previous step).

Figure 10-27. Editor settings for Android export

Note Your editor settings will look different from Figure 10-27 if you are using a
different version of Godot. if the Adb and Jarsigner fields are missing, then there is
no need to enter their paths. but we need to do that if we are using Godot 3.2.3.

CHAPTer 10 PubLisHinG Your GAMe

349

 6. Fill in the Adb, Jarsigner, and Android SDK Path fields with the

respective paths given here (replace UserName with your Windows

account name):

• C:/Users/UserName/AppData/Local/Android/Sdk/platform-

tools/adb.exe

• C:/Program Files/Java/jdk-16.0.2/bin/jarsigner.exe

• C:/Users/UserName/AppData/Local/Android/Sdk

 7. Close the Editor Settings, and navigate to Editor ➤ Manage Export

Templates at the top left of the interface. Your Export Template

Manager should look like the one shown in Figure 10-28 if you’ve

downloaded the export template as explained previously. If you

haven’t done so, you can just click the Download button in your

Export Template Manager to download the templates.

Figure 10-28. The Export Template Manager after installing the Export Templates

CHAPTer 10 PubLisHinG Your GAMe

350

 8. Next, navigate to Project ➤ Export from the Project tab at the top-

left corner of the interface. Click the Add button and select the

Android option, as shown in Figure 10-29.

Figure 10-29. Adding an Android export preset

Note if you’ve already created an export for Windows Desktop, its corresponding
preset will be already be added to the Presets list.

CHAPTer 10 PubLisHinG Your GAMe

351

 9. An Android export preset will be added to the Presets list, as

shown in Figure 10-30. You can change various features related to

this export in the window. Click the Export Project button.

Figure 10-30. An Android export preset is added to the Export window

CHAPTer 10 PubLisHinG Your GAMe

352

 10. In the Save a File window that opens, navigate to the path where

you want to save the game, and enter the name of your game in

the File field, as shown in Figure 10-31. Make sure that Export with

Debug is not enabled during your final export.

Figure 10-31. Specifying the path and name of the Android export

 11. Once you click the Save button, the game APK will be created at

the path specified.

 12. Connect your Android mobile phone to your computer using a

USB cable, and copy the game APK file (e.g., MyGame.apk) into

your phone.

CHAPTer 10 PubLisHinG Your GAMe

353

Figure 10-32. Author’s depiction of the game being played on a mobile phone

 13. You can now click the app on your phone to install it. Since this

app is not from a verified source on the Google Play Store, you

might get a warning asking you to confirm whether you want to

install the app (you need to enable installation from a third-party

source). Click Install Anyway to install your app and start playing

on your mobile phone!

 Exporting to Browser (HTML)
Follow these steps:

 1. Click the Project tab at the top of the interface, and navigate to

Project ➤ Export to open the Export window.

 2. Click the Add button and select the HTML5 option. This creates

an HTML5 preset, as shown in Figure 10-33. If you have already

created presets for other platforms, such as Windows Desktop and

Android, they will be present in the Presets list.

CHAPTer 10 PubLisHinG Your GAMe

354

Figure 10-33. Adding an HTML5 export preset

Note Make sure that you’ve downloaded the export templates, as explained
previously. if you haven’t done so, navigate to editor ➤ Manage export Templates,
and then click the Download button to install the export templates.

 3. We can change different features related to this export by

changing the properties on the right side of the Export window.

 4. Click the Export Project button, and the Save a File window will

open. Create a new folder under the path where you want to

save the exported game, and then navigate to the path. Name

the file index.html, as shown in Figure 10-34, and then click the

Save button.

CHAPTer 10 PubLisHinG Your GAMe

355

Figure 10-34. Specifying the path and naming the HTML5 export

Note For uploading your browser file to itch.io, you will need to save it as
Index.html.

 5. Now, open the folder where you saved the file on your computer.

You’ll notice that six different files have been created in this folder,

one of them being index.html.

 6. We need to create a zip files containing all these files. Select all the

files, right-click, and under 7-Zip click “Add to archive,” as shown

in Figure 10-35. If you don’t have 7-Zip, you can download it for

free from https://www.7- zip.org/download.html or use any

other software for creating the zip file.

CHAPTer 10 PubLisHinG Your GAMe

https://www.7-zip.org/download.html

356

Figure 10-35. Creating a zip folder for the browser files

 7. In the Add to Archive window that opens, change the Archive format

to zip, and then click the OK button. A compressed folder called

MyGame.zip is created and is ready to be uploaded on a website!

 Publishing Your Game
There are tons of different websites or platforms that you can publish and sell your game

on, with some of them being paid and some free. Examples include Steam, Itch.io, Game

Jolt, Google Play, and the Apple Store, among others. Each website or platform has its

own set of requirements, and some require you to pay a certain amount to publish your

game or share a part of the profit that your game makes with them. We’ll take a look at

how to publish your game on a platform that is completely free to publish and sell your

game on: Itch.io.

 Itch.io
As we saw in previous chapter, Itch.io is a website that has a variety of indie games

and game assets (free as well as paid). It even hosts themed game jams, where you can

submit your games for competitions. It’s a great place for indie-game developers to

publish their game. Let’s take a look at how to do just that.

CHAPTer 10 PubLisHinG Your GAMe

357

 1. Create an account on Itch.io (https://itch.io).

 2. Once your account is created, head over to your Creator

Dashboard, as shown in Figure 10-36, and then click “Create new

project.”

Figure 10-36. Creator dashboard of Itch.io

A page opens where you can enter various details of your game, such

as the following:

• Title of your game

• Project URL.

• Description or tagline.

• Classification: Select Games, since we are uploading a game.

• Kind of Project: Choose HTML, since we are uploading an HTML file.

This will allow the game to be played in the browser. If you set this to

Downloadable, then your game files will need to be downloaded by

the player, and the game cannot be played in the browser in this case.

• Release Status.

• Pricing: This needs to be separately set up on your Itch.io account for

you to be able to accept payments for your game.

CHAPTer 10 PubLisHinG Your GAMe

https://itch.io

358

• Uploads: This is where you’ll be uploading your game files. To upload

your game files, click the Upload Files button, and then navigate to

and select your zipped game folder. Once the folder is uploaded,

select the “This file will be played in the browser” option.

• Embed Options: Select Embed in page, select Manually set size, and

in the Viewport dimensions, set the Width and Height to be equal to

the dimensions of your game.

• Frame options: You can select various options such as Mobile

friendly, Automatically start on page load, Fullscreen button, and

Enable scrollbars.

• Description: Enter a few lines describing your game.

• Genre: Select Action, Adventure, Platformer, Strategy, etc.

• Tags: Enter keywords that can be used to search for your game.

• App Store links: You can add links to various App Stores if you’ve

uploaded your game there as well.

• Community: You can add a Comments section or even a community

page called a discussion board to get feedback from the players of

your game.

• Visibility & access: Set it to Draft and save the page, and then set it

to Public to release your game to the Itch.io community. If you set to

Restricted, then only those with a link to your game page can view

and play your game.

You can also upload a cover image, a video trailer, and screenshots of your game at

the top of your new project page.

Note You can check the dimensions of your game in the Godot interface by
navigating to Project ➤ Project settings ➤ General ➤ Display ➤ Window.

CHAPTer 10 PubLisHinG Your GAMe

359

Now, click the Save button at the bottom of the page, and click the View Page button.

Now, a page will open with a button called “Run game.” Click the button to start playing

in the browser! You can always update your game files and upload them anytime to the

same project from the dashboard.

TRY IT!

Export and Publish

 1. export your game to PC (Windows), mobile (Android), and browser (HTML5).

 2. explore various options for publishing and monetizing your game.

 3. Publish your game!

 Exporting Tips
Here are some quick tips that can make it easier to export your game:

• If there is an issue with exporting your game, copy all the files that are

in your project, and paste it in a new, empty Godot project (using the

Windows File Explorer). Give the new project a different name than

the first one, and try to export again.

• The same Godot project can be opened in different versions of

Godot, and changes made in one version are reflected when you

open the project in another one. Do note that projects created in

newer versions of Godot may not work correctly when you try to open

them in older versions of the engine. On the other hand, projects

created in older versions generally work fine in newer versions

of Godot.

• When exporting your game, make sure to adjust the Project Settings

(Display) such as:

• Dimensions of the game (width and height)

• Borderless or bordered game screen

• Resizable or fixed-sized game screen

CHAPTer 10 PubLisHinG Your GAMe

360

• Full-screen mode

• Orientation: landscape or portrait

• Stretch mode

 Monetizing Your Game
Websites that let you publish indie games such as Steam and Itch.io usually have the

option of selling your game. Apart from that, there are various other ways that your game

can earn money:

• In-game currency: You can introduce an in-game currency that the

player can use for buying extra lives, character customization items,

extra skills, and in-game consumables.

• Premium content: You can set certain content in your game to be

“premium” such as a new character, new outfits, or even extra game

levels, which are locked unless the player buys them through in-app

purchases.

• Advertisements: A lot of free-to-play apps on the Google Play store

use in-app advertisements to generate revenue. You can link your

game to certain videos or websites of advertising agencies that will

pay you every time the player clicks the links leading to them. You

can offer a small reward for watching videos or downloading other

games or apps.

• Merchandising: This method may need quite a bit of investment on

your side. Once your game earns a certain amount of revenue, you

can invest in creating merchandise related to your game that people

can buy in real life.

 What’s Next?
After going through all the chapters in this book, I hope that you’ve gained the

confidence to create and publish your first 2D platformer in Godot! Although it may

seem that we are at the end of our journey, this is just the beginning. Godot has

numerous features that you can explore such as post-processing effects, lighting and

CHAPTer 10 PubLisHinG Your GAMe

361

illumination, support for augmented and virtual reality integration, and a whole new

system for making 3D games, I hope that you’re excited about what’s ahead. Here are

some ideas to tickle your brain:

• Adding multiple game levels to your game, each with an increasing

level of difficulty.

• Spawning different types of enemies randomly throughout

your game.

• Creating and adding more elements to your game world such as

springboards for higher player jumps, power-ups that give the player

more skills/lives, ladders that the player can climb, and secret areas

in the game that the player can explore for greater rewards.

• A game screen for controlling the game settings such as the music

volume, level difficulty, choice of character, and character outfits.

 Key Takeaways
In this chapter, we learned how to upgrade our game by adding more features such as

adding a global variable system, enemy shooting, and touchscreen buttons. We walked

through the steps for exporting our game to various platforms such as mobile (Android),

PC (Windows), and browser (HTML5). We saw the different places where we can publish

and monetize the game and were introduced to a few ideas that we can explore further

as a game developer.

CHAPTer 10 PubLisHinG Your GAMe

363
© Maithili Dhule 2022
M. Dhule, Beginning Game Development with Godot, https://doi.org/10.1007/978-1-4842-7455-2

Index

A
Add touchscreen buttons, 336–340
AnimatedSprite node, 135, 233
Animation

adding image, 158
create player, 151
drag and drop player, 128
frames field, 136, 137
Godot, 153–155
idle, 138–140
image folder, 130
individual images, 129, 138
jump, 146–148, 150, 151
panel, 156
player, 133, 134
player actions, 152
run, 141, 142, 144
sprite sheet, 152, 153
2D workspace, 132
workspace, 156

Area2D node, 255, 257, 333
Array, 44
Asset Library, 32

B
break keyword, 57

C
Camera2D node, 198
Camera2D’s Limit property, 198

CanvasItem, 30
CanvasLayer node, 265, 277
Coin animation, 209

Area2D node, 206, 210
coin images, 204, 205
collect coins, 219
collect coins,

signals, 220
CollisionShape2D, 207, 208
create new, 205
game level, 216, 217
Gold coin, 220, 222
interval, 213
Texture property, 209
timeline, 214
track, 215

Coin scene, 252
Coin sprite sheets, 204
Collectibles, 225

adjust rewards, 228, 230, 240
silver coins, 227

CollisionChecker node, 251
Collision layers, 247
Collision masks, 247
CollisionShape2D node, 70, 235,

252, 334
ColorRect node, 290
continue keyword, 57
Customs signals, 274

getting hurt, 286, 287
Gold coin, 279, 281
Node dock, 277

https://doi.org/10.1007/978-1-4842-7455-2#DOI

364

D
default_env.tres, 23
Defeat enemy, 328–331, 333
Design ideas, 202

E
Enemy collide, 244, 245
Enemy node, 236
Enemy scene, 250
Enemy sprites, 232
Engine Interface

animation panel, 28, 29
audio, 31
components, 22, 33
debugger, 30
FileSystem, 23, 24
Inspector dock, 26, 27
output panel, 30
scene dock, 24, 26
SpriteFrames panel, 29
2D toolbar, 31
workspaces, 28

Export templates
download, 341, 342
mobile

Godot 3.2.3, 347–349, 351
HTML, 353–356
Itch.io, 356–358
money, 360
path, 352
publish, 356
tips, 359

PC (Windows), 343, 345, 346

F
Fall Area, 259
FileSystem dock, 23, 32

Finish Level Area, 259
FireballCollisionChecker node, 334, 335
Frames, 29

G
Game assets

definition, 89
Gameart2D, 92, 93
import art, 94
Itch.io, 91
OpenGameArt.org, 90
2D platform, 93

Game engine, 7–10
Game object, 95
Game physics

adding node, to scene, 63, 64
collision bodies, 62
collision objects, 61
collision shape, 70–74
creating rigid body, 65, 66
creating static body, 80–82, 85
duplicating node, 78, 79
node-scene architecture, 62, 63
playing first scene, 74–78
rigid bodies, 86
Sprite Node, 66–69

GDScript
array, 44, 45
comparison/logical operators, 49
definition, 35
dictionaries, 52–54
functions, 42
if-else statements, 51
looping, 55, 57–59
mathematical operators, 48
random number, 46, 47
scripting, 36, 37

INDEX

365

variables/data types
Boolean, 38
comments, 41
constants, 40
declaring variable, 39
enums, 40
explicit/inferred typing, 39
float, 38
integer, 38
keywords, 41
output, 41

Global variable system, 324–326, 328
Godot

command prompt window, 18, 19
community support, 12
creating project, 19–22
definition, 11
GDScript, 12
interface, 22
MB, 13
multiple platforms, 11
open source, 11
scripting language, 17

Graphical user interface (GUI), 263
Graphics

assigning keyboard input, 117–119, 121
background image, 122, 124, 125
creating player, 108–111
keyboard input, 113–117
linking player to main

scene, 112, 113

H, I, J
HBoxContainer, expand, 272
Heads-up display (HUD), 323

create, 264
create game, 288

create script, 273, 274
font size, 268
Label node, 265
New DynamicFont, 267
ScoreValue, 270

Heart image, 282

K
Keywords, 41
KinematicBody2D, 256, 258

L
Looping, 55

M
Main Game Scene

designing, 96–99, 101–108
game object, creating, 95

Massively multiplayer online role-playing
games (MMORPGs), 6

Music file formats, 311
my_name, 42

N, O
Node2D, 36

P, Q
Parallax background, 187, 188, 191,

192, 197, 199
Player layer, 250
Playervars.gd script, 325
Playtest buttons, 32
print_my_name, 42
_process (_delta), 42

INDEX

366

R
randf() function, 48
randi_range() function, 47
RayCast2D, 242
RayCast2D node, 240–242
_ready() function, 42, 285
Roller Coaster Tycoon (RCT), 5
Ruler Mode, 193

S
score_count() function, 224
Sound effects, 313

coins collection, 314, 316, 317, 319, 320
jumps, 313, 314

Sprite, 66
SpriteFrames editor, 233
SpriteFrames panel, 29
StaticBody2D node, 163
Sunny Land, 161, 231
SunnyLand, 128

T, U
Texture property, 190
TextureRect node, 162
TileMap, 161

camera-follow, 182, 183
collision shape, 174, 175
create individual tiles, 166
create node, 166

drawing shape, 174
editor, 170, 171
game screen, 187
grid showing

workspace, 167
image tile, 173
import, 163, 164
opening, 169
palette, 177, 180
resource, 168

Title screen
adding buttons, 300–305
adding image, 309
adding panel, 295–299
adding text, 293–295
attach script, 305–308
background, 288, 290, 292
Game Over screen, 310

2D physics layers, 249

V, W, X, Y, Z
Video games

design
creative vision, 7
immersive scenarios, 6
player choices, 6
player in control, 5, 6
progression, 5

development, 3
technology, 4

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: The Art of Creating Games
	Chapter 1: Introduction
	The Birth of Video Games
	Principles of Game Design
	Game Progression
	Put the Player in Control
	Give the Player Choices
	Create Immersive Scenarios
	Have a Creative Vision

	What Is a Game Engine?
	How Do We Choose a Game Engine?
	Why Choose Godot?
	The Graphics Engines Are Amazing
	It’s Easy on the Eyes
	It’s Open Source
	It Can Be Run on Multiple Platforms
	It Supports Live Editing
	It Has Its Own Scripting Language
	There Is a Vast Community Support
	The Documentation Is Extensive
	You Can Tinker with It
	Teamwork Is a Breeze
	It’s “MegaByte”-Sized

	Key Takeaways

	Part II: Starting Out with Godot
	Chapter 2: Getting Started with Godot
	Downloading the Engine
	Creating a New Project
	Exploring the Engine Interface
	FileSystem
	Scene Dock
	Inspector Dock
	Workspaces
	Animation Panel
	SpriteFrames Panel
	Output Panel
	Debugger Panel
	Audio Panel
	2D Toolbar

	Playtest Buttons
	Tips and Shortcuts
	Key Takeaways

	Chapter 3: GDScript in a Nutshell
	What Is GDScript?
	Scripting
	Variables and Data Types
	Integer
	Float
	Boolean
	String
	Declaring a Variable
	Explicit and Inferred Typing
	Constants
	Enums
	Keywords
	Comments
	Output

	Functions
	Array
	Random Number Generation
	Operators and Computation
	Mathematical Operators
	Comparison and Logical Operators

	if-else Statements
	Dictionaries
	Looping
	for Loop
	while Loop

	Key Takeaways

	Chapter 4: Exploring Game Physics
	Collision Objects
	The Node-Scene Architecture
	Adding Nodes to the Scene
	Creating a Rigid Body
	Adding a Sprite Node
	Adding a Collision Shape
	Playing Your First Scene
	Properties of RigidBody2D
	Duplicating a Node
	Creating a Static Body
	Key Takeaways

	Part III: Designing the Game
	Chapter 5: Adding Game Graphics
	What Are Game Assets?
	OpenGameArt.org
	Itch.io
	Gameart2D
	Kenney.nl

	Choosing the Right Assets
	Importing Game Art
	Creating the Main Game Scene
	Creating Game Objects as Scenes
	Designing the Main Game Scene

	Creating the Player
	Linking the Player to the Main Scene
	Moving the Player Using Keyboard Input
	Assigning Keyboard Input
	Adding a Background Image
	Key Takeaways

	Chapter 6: Game Animations
	Giving Life to the Player
	Importing Images for Animation
	Animating the Player
	Creating Animations with Individual Images
	Idle Animation
	Run Animation
	Jump Animation
	Other Player Actions

	Creating Animations Using a Sprite Sheet
	Introduction to Godot’s Animation Player

	Key Takeaways

	Chapter 7: Building the Game World
	Importing the TileMaps
	Creating Individual Tiles
	Camera-Follow
	Creating a Parallax Background
	Design Ideas
	Key Takeaways

	Chapter 8: Counting Wins and Losses
	Adding Coins to the Game
	Animating the Coin
	Creating a Coin in the Game Level

	Collecting Coins
	Collecting the Coin Using Signals

	Creating More Collectibles
	Adjusting the Rewards
	Adding Enemies
	Detecting Ledges with a Raycast
	Colliding with the Enemy
	Collision Layer and Collision Mask
	Player
	Enemy
	Coin

	Detecting Falls
	Changing Scenes
	Fall Area and Finish Level Area Collision
	Key Takeaways

	Part IV: Game Enhancements and Export
	Chapter 9: Game GUI
	Creating the HUD
	HBoxContainer and VBoxContainer
	Creating a Script for the HUD

	Custom Signals for Coin Collection
	Displaying the Player’s Lives

	Turning the Player Red on Getting Hurt
	Creating the Title Screen
	Background
	Adding Text
	Adding a Panel
	Adding Buttons
	Attaching a Script to a Button
	Adding an Image to the Title Screen
	The Game Over Screen

	Adding Music to the Game
	Adding Sound Effects
	Jumping
	Coin Collected

	Key Takeaways

	Chapter 10: Publishing Your Game
	Game Enhancements
	Creating Global Variables
	Defeating the Monsters
	Adding Touchscreen Buttons

	Exporting Your Game
	Downloading Export Templates

	Exporting to PC (Windows)
	Exporting to Mobile (Android)
	Exporting to Browser (HTML)
	Publishing Your Game
	Itch.io
	Exporting Tips
	Monetizing Your Game
	What’s Next?

	Key Takeaways

	Index

